Scalar quanta in Fermi liquids: Zero sounds, instabilities, Bose condensation, and a metastable state in dilute nuclear matter

Regular Article - Theoretical Physics

Abstract.

The spectrum of bosonic scalar-mode excitations in a normal Fermi liquid with local scalar interaction is investigated for various values and momentum dependence of the scalar Landau parameter \(f_{0}\) in the particle-hole channel. For \(f_{0} > 0\) the conditions are found when the phase velocity on the spectrum of zero sound acquires a minimum at non-zero momentum. For \(-1 < f_{0} < 0\) there are only damped excitations, and for \(f_{0} < -1\) the spectrum becomes unstable against the growth of scalar-mode excitations. An effective Lagrangian for the scalar excitation modes is derived after performing a bosonization procedure. We demonstrate that the instability may be tamed by the formation of a static Bose condensate of the scalar modes. The condensation may occur in a homogeneous or inhomogeneous state relying on the momentum dependence of the scalar Landau parameter. We show that in the isospin-symmetric nuclear matter there may appear a metastable state at subsaturation nuclear density owing to the condensate. Then we consider a possibility of the condensation of the zero-sound-like excitations in a state with a non-zero momentum in Fermi liquids moving with overcritical velocities, provided an appropriate momentum dependence of the Landau parameter \(f_{0}(k) > 0\). We also argue that in peripheral heavy-ion collisions the Pomeranchuk instability may occur already for \(f_{0} > -1\).

References

  1. 1.
    L.D. Landau, Sov. Phys. JETP 3, 920 (1956)Google Scholar
  2. 2.
    L.D. Landau, Sov. Phys. JETP 5, 1011 (1957)Google Scholar
  3. 3.
    L.D. Landau, Sov. Phys. JETP 8, 70 (1959)Google Scholar
  4. 4.
    E.M. Lifshitz, L.P. Pitaevskii, Statistical Physics, Part 2 (Pergamon, 1980)Google Scholar
  5. 5.
    D. Pines, Ph. Nozieres, The Theory of Quantum Liquids (W.A. Benjamin, N.Y., 1966)Google Scholar
  6. 6.
    G. Baym, Ch. Pethick, Landau Fermi-Liquid Theory, 2nd edition (Wiley-VCH, Weinheim, 2004)Google Scholar
  7. 7.
    A.B. Migdal, Sov. Phys. JETP 5, 333 (1957)MathSciNetGoogle Scholar
  8. 8.
    V.M. Galitsky, A.B. Migdal, Sov. Phys. JETP 7, 96 (1958)Google Scholar
  9. 9.
    A.B. Migdal, Sov. Phys. JETP 16, 1366 (1963)ADSGoogle Scholar
  10. 10.
    A.B. Migdal, Theory of Finite Fermi Systems and Properties of Atomic Nuclei (Wiley and Sons, N.Y., 1967)Google Scholar
  11. 11.
    A.B. Migdal, Teoria Konechnyh Fermi System i Svoistva Atomnyh Yader (Nauka, Moscow, 1983) (in Russian)Google Scholar
  12. 12.
    I.Ya. Pomeranchuk, Sov. Phys. JETP 8, 361 (1958)Google Scholar
  13. 13.
    D. Fay, A. Layzer, Phys. Rev. Lett. 20, 187 (1968)ADSCrossRefGoogle Scholar
  14. 14.
    M.Yu. Kagan, A.V Chubukov, JETP Lett. 47, 614 (1988)ADSGoogle Scholar
  15. 15.
    M.Yu. Kagan, Modern Trends in Superconductivity and Superfluidity (Springer, Heidelberg, 2013)Google Scholar
  16. 16.
    D.N. Voskresensky, Phys. Lett. B 358, 1 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    L.P. Pitaevskii, JETP Lett. 39, 511 (1984)ADSGoogle Scholar
  18. 18.
    D.N. Voskresensky, JETP 77, 917 (1993)ADSGoogle Scholar
  19. 19.
    L.A. Melnikovsky, Phys. Rev. B 84, 024525 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    G. Baym, C.J. Pethick, Phys. Rev. A 86, 023602 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    E.E. Kolomeitsev, D.N. Voskresensky, Phys. Rev. C 91, 025805 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    E.E. Kolomeitsev, D.N. Voskresensky, arXiv:1611.05093, to be published in Prog. Theor. Exp. Phys
  23. 23.
    G. Röpke, L. Münchow, H. Schulz, Phys. Lett. B 110, 21 (1982)ADSCrossRefGoogle Scholar
  24. 24.
    G. Röpke, L. Münchow, H. Schulz, Nucl. Phys. A 379, 536 (1982)ADSCrossRefGoogle Scholar
  25. 25.
    H. Schulz, D.N. Voskresensky, J. Bondorf, Phys. Lett. B 133, 141 (1983)ADSCrossRefGoogle Scholar
  26. 26.
    P. Chomaz, M. Colonna, J. Randrup, Phys. Rep. 389, 263 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    J. Margueron, P. Chomaz, Phys. Rev. C 67, 041602 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    D.G. Ravenhall, C.J. Pethick, J.R. Wilson, Phys. Rev. Lett. 50, 2066 (1983)ADSCrossRefGoogle Scholar
  29. 29.
    T. Maruyama, T. Tatsumi, D.N. Voskresensky, T. Tanigawa, S. Chiba, Phys. Rev. C 72, 015802 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    A.B. Migdal, Rev. Mod. Phys. 50, 107 (1978)ADSCrossRefGoogle Scholar
  31. 31.
    A.B. Migdal, E.E. Saperstein, M.A. Troitsky, D.N. Voskresensky, Phys. Rep. 192, 179 (1990)ADSCrossRefGoogle Scholar
  32. 32.
    H. Heiselberg, C.J. Pethick, E.F. Staubo, Phys. Rev. Lett. 70, 1355 (1993)ADSCrossRefGoogle Scholar
  33. 33.
    D.N. Voskresensky, M. Yasuhira, T. Tatsumi, Nucl. Phys. A 723, 291 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    T. Maruyama, T. Tatsumi, D.N. Voskresensky, T. Tanigawa, T. Endo, S. Chiba, Phys. Rev. C 73, 035802 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    D.N. Voskresensky, Phys. Lett. B 392, 262 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    E.E. Kolomeitsev, D.N. Voskresensky, Nucl. Phys. A 759, 373 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    E.E. Saperstein, S.V. Tolokonnikov, JETP Lett. 68, 553 (1998)ADSCrossRefGoogle Scholar
  38. 38.
    V.A. Sadovnikova, M.G. Ryskin, Phys. At. Nucl. 64, 440 (2001)CrossRefGoogle Scholar
  39. 39.
    V.A. Sadovnikova, Phys. At. Nucl. 70, 989 (2007)CrossRefGoogle Scholar
  40. 40.
    V.A. Sadovnikova, arXiv:1304.0928 (2013)
  41. 41.
    S.A. Fayans, E.E. Saperstein, S.V. Tolokonnikov, Nucl. Phys. A 326, 463 (1979)ADSCrossRefGoogle Scholar
  42. 42.
    V.A. Khodel, E.E. Saperstein, Nucl. Phys. A 348, 261 (1980)ADSCrossRefGoogle Scholar
  43. 43.
    A.I. Akhiezer, I.A. Akhiezer, B. Barts, Sov. Phys. JETP 29, 1120 (1969)ADSGoogle Scholar
  44. 44.
    S.O. Backman, G.E. Brown, J.A. Niskanen, Phys. Rep. 124, 1 (1985)ADSCrossRefGoogle Scholar
  45. 45.
    D.N. Voskresensky, I.N. Mishustin, Sov. J. Nucl. Phys. 35, 667 (1982)Google Scholar
  46. 46.
    C.J. Pethick, D.G. Ravenhall, Ann. Phys. 183, 131 (1988)ADSCrossRefGoogle Scholar
  47. 47.
    J. Speth, S. Krewald, F. Grümmer, P.-G. Reinhard, N. Lyutorovich, V. Tselyaev, Nucl. Phys. A 928, 17 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    T. Matsui, Nucl. Phys. A 370, 365 (1981)ADSCrossRefGoogle Scholar
  49. 49.
    K.A. Maslov, E.E. Kolomeitsev, D.N. Voskresensky, Nucl. Phys. A 950, 64 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    J. Wambach, T.L. Ainsworth, D. Pines, Nucl. Phys. A 555, 128 (1993)ADSCrossRefGoogle Scholar
  51. 51.
    V.V. Skokov, D.N. Voskresensky, JETP Lett. 90, 223 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    V.V. Skokov, D.N. Voskresensky, Nucl. Phys. A 828, 401 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    J. Randrup, Phys. Rev. C 79, 054911 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    J. Randrup, Phys. Rev. C 82, 034902 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    V.V. Skokov, D.N. Voskresensky, Nucl. Phys. A 847, 253 (2010)ADSCrossRefGoogle Scholar
  56. 56.
    D.N. Voskresensky, V.V. Skokov, Phys. At. Nucl. 75, 770 (2012)CrossRefGoogle Scholar
  57. 57.
    A. Altland, B. Simons, Condensed Matter Field Theory (CUP, Cambridge, 2010)Google Scholar
  58. 58.
  59. 59.
    E.G. Brovman, Yu. Kagan, Sov. Phys. JETP 36, 1025 (1972)ADSMathSciNetGoogle Scholar
  60. 60.
    E.G. Brovman, A. Kholas, Sov. Phys. JETP 39, 924 (1974)ADSGoogle Scholar
  61. 61.
    Yu.B. Ivanov, J. Knoll, D.N. Voskresensky, Nucl. Phys. A 672, 313 (2000)ADSCrossRefGoogle Scholar
  62. 62.
    D.N. Voskresensky, Phys. Scr. 29, 259 (1984)ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    D.N. Voskresensky, Phys. Scr. 47, 333 (1993)ADSCrossRefGoogle Scholar
  64. 64.
    A.M. Dyugaev, Sov. Phys. JETP 56, 567 (1982)Google Scholar
  65. 65.
    A.M. Dyugaev, Sov. J. Nucl. Phys. 38, 680 (1983)Google Scholar
  66. 66.
    Y.B. Ivanov, J. Knoll, H. van Hees, D.N. Voskresensky, Phys. At. Nucl. 64, 652 (2001)CrossRefGoogle Scholar
  67. 67.
    D.R. Tilley, J. Tilley, Superfluidity and Superconductivity (IOP Publishing, Bristol, 1990)Google Scholar
  68. 68.
    S. Coleman, E. Weinberg, Phys. Rev. D 7, 1888 (1973)ADSCrossRefGoogle Scholar
  69. 69.
    N. Kaiser, S. Fritsch, W. Weise, Nucl. Phys. A 697, 255 (2002)ADSCrossRefGoogle Scholar
  70. 70.
    G. Baym, H.A. Bethe, C.J. Pethick, Nucl. Phys. A 175, 225 (1971)ADSCrossRefGoogle Scholar
  71. 71.
    G. Baym, Phys. Rev. Lett. 30, 1340 (1973)ADSCrossRefGoogle Scholar
  72. 72.
    A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998)ADSCrossRefGoogle Scholar
  73. 73.
    H.-J. Pirner, D.N. Voskresensky, Phys. Lett. B 343, 25 (1995)ADSCrossRefGoogle Scholar
  74. 74.
    S. Typel, G. Röpke, T. Klähn, D. Blaschke, H.H. Wolter, Phys. Rev. C 81, 015803 (2010)ADSCrossRefGoogle Scholar
  75. 75.
    M. Hempel, J. Schaffner-Bielich, Nucl. Phys. A 837, 210 (2010)ADSCrossRefGoogle Scholar
  76. 76.
    M.D. Voskresenskaya, S. Typel, Nucl. Phys. A 887, 42 (2012)ADSCrossRefGoogle Scholar
  77. 77.
    F. Grill, C. Providencia, S.S. Avancini, Phys. Rev. C 85, 055808 (2012)ADSCrossRefGoogle Scholar
  78. 78.
    G. Röpke, N.-U. Bastian, D. Blaschke, T. Klähn, S. Typel, H.H. Wolter, Nucl. Phys. A 897, 70 (2013)ADSCrossRefGoogle Scholar
  79. 79.
    G. Röpke, Phys. Rev. C 92, 054001 (2015)ADSCrossRefGoogle Scholar
  80. 80.
    G. Röpke, Phys. Part. Nucl. 46, 772 (2015)CrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Matej Bel UniversityBanska BystricaSlovakia
  2. 2.National Research Nuclear University (MEPhI)MoscowRussia

Personalised recommendations