Advertisement

Phenomenology of pseudotensor mesons and the pseudotensor glueball

  • Adrian KoenigsteinEmail author
  • Francesco Giacosa
Regular Article - Theoretical Physics

Abstract.

We study the decays of the pseudotensor mesons \((\pi_{2}(1670), K_{2}(1770), \eta_{2}(1645), \eta_{2}(1870))\) interpreted as the ground-state nonet of \(1^{1}D_{2}\) \(\bar{q}q\) states using interaction Lagrangians which couple them to pseudoscalar, vector, and tensor mesons. While the decays of \(\pi_{2}(1670)\) and \(K_{2}(1770)\) can be well described, the decays of the isoscalar states \(\eta_{2}(1645)\) and \(\eta_{2}(1870)\) can be brought in agreement with the present experimental data only if the mixing angle between nonstrange and strange states is surprisingly large (about \(-42^{\circ}\), similar to the mixing in the pseudoscalar sector, in which the chiral anomaly is active). Such a large mixing angle is however at odd with all other conventional quark-antiquark nonets: if confirmed, a deeper study of its origin will be needed in the future. Moreover, the \(\bar{q}q\) assignment of pseudotensor states predicts that the ratio \([\eta_{2}(1870) \rightarrow a_{2}(1320) \pi]/[\eta_{2}(1870) \rightarrow f_{2}(1270) \eta]\) is about 23.5. This value is in agreement with Barberis et al., (\(20.4 \pm 6.6\)), but disagrees with the recent reanalysis of Anisovich et al., (\(1.7 \pm 0.4\)). Future experimental studies are necessary to understand this puzzle. If Anisovich's value is confirmed, a simple nonet of pseudoscalar mesons cannot be able to describe data (different assignments and/or additional states, such as an hybrid state, will be needed). In the end, we also evaluate the decays of a pseudoscalar glueball into the aforementioned conventional \(\bar{q}q\) states: a sizable decay into \(K^{\ast}_{2}(1430) K\) and \(a_{2}(1230) \pi\) together with a vanishing decay into pseudoscalar-vector pairs (such as \(\rho(770) \pi\) and \(K^{\ast}(892) K\)) are expected. This information can be helpful in future studies of glueballs at the ongoing BESIII and at the future PANDA experiments.

References

  1. 1.
    Particle Data Group Collaboration (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014)CrossRefGoogle Scholar
  2. 2.
    S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    E. Klempt, A. Zaitsev, Phys. Rep. 454, 1 (2007) arXiv:0708.4016 [hep-ph]ADSCrossRefGoogle Scholar
  4. 4.
    D. Parganlija, P. Kovacs, G. Wolf, F. Giacosa, D.H. Rischke, Phys. Rev. D 87, 014011 (2013) arXiv:1208.0585 [hep-ph]ADSCrossRefGoogle Scholar
  5. 5.
    F. Giacosa, T. Gutsche, V.E. Lyubovitskij, A. Faessler, Phys. Rev. D 72, 114021 (2005) arXiv:hep-ph/0511171 ADSCrossRefGoogle Scholar
  6. 6.
    L. Burakovsky, J.T. Goldman, Phys. Rev. D 57, 2879 (1998) arXiv:hep-ph/9703271 ADSCrossRefGoogle Scholar
  7. 7.
    V. Cirigliano, G. Ecker, H. Neufeld, A. Pich, JHEP 06, 012 (2003) arXiv:hep-ph/0305311 ADSCrossRefGoogle Scholar
  8. 8.
    B. Wang, C.Q. Pang, X. Liu, T. Matsuki, Phys. Rev. D 91, 014025 (2015) arXiv:1410.3930 [hep-ph]ADSCrossRefGoogle Scholar
  9. 9.
    C. Bing, K.W. Wei, A. Zhang, Adv. High Energy Phys. 2013, 217858 (2013) arXiv:1304.6190 [hep-ph]Google Scholar
  10. 10.
    G. Amelino-Camelia et al., Eur. Phys. J. C 68, 619 (2010) arXiv:1003.3868 [hep-ex]ADSCrossRefGoogle Scholar
  11. 11.
    T. Feldmann, P. Kroll, B. Stech, Phys. Rev. D 58, 114006 (1998) arXiv:hep-ph/9802409 ADSCrossRefGoogle Scholar
  12. 12.
    G. 't Hooft, Phys. Rep. 142, 357 (1986)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    GlueX Collaboration (H. Al Ghoul et al.), AIP Conf. Proc. 1735, 020001 (2016) arXiv:1512.03699 [nucl-ex]CrossRefGoogle Scholar
  14. 14.
    GlueX Collaboration (B. Zihlmann), AIP Conf. Proc. 1257, 116 (2010)Google Scholar
  15. 15.
    M. Shepherd, PoS Bormio 2014, 004 (2014)MathSciNetGoogle Scholar
  16. 16.
    CLAS Collaboration (A. Rizzo), PoS CD 15, 060 (2016)Google Scholar
  17. 17.
    Y. Chen et al., Phys. Rev. D 73, 014516 (2006) arXiv:hep-lat/0510074 ADSCrossRefGoogle Scholar
  18. 18.
    E. Gregory, A. Irving, B. Lucini, C. McNeile, A. Rago, C. Richards, E. Rinaldi, JHEP 10, 170 (2012) arXiv:1208.1858[hep-lat]ADSCrossRefGoogle Scholar
  19. 19.
    A. Koenigstein, F. Giacosa, D.H. Rischke, Ann. Phys. 368, 16 (2016) arXiv:1508.00110 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    F. Divotgey, L. Olbrich, F. Giacosa, Eur. Phys. J. A 49, 135 (2013) arXiv:1306.1193 [hep-ph]ADSCrossRefGoogle Scholar
  21. 21.
    F. Giacosa, J. Sammet, S. Janowski, arXiv:1607.03640 [hep-ph]
  22. 22.
    C. Amsler, F.E. Close, Phys. Rev. D 53, 295 (1996) arXiv:hep-ph/9507326 ADSCrossRefGoogle Scholar
  23. 23.
    F. Giacosa, T. Gutsche, A. Faessler, Phys. Rev. C 71, 025202 (2005) arXiv:hep-ph/0408085 ADSCrossRefGoogle Scholar
  24. 24.
    G. 't Hooft, Nucl. Phys. B 72, 461 (1974)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    E. Witten, Nucl. Phys. B 160, 57 (1979)ADSCrossRefGoogle Scholar
  26. 26.
    R.F. Lebed, Czech. J. Phys. 49, 1273 (1999) arXiv:nucl-th/9810080 ADSCrossRefGoogle Scholar
  27. 27.
    F. Giacosa, G. Pagliara, Phys. Rev. C 76, 065204 (2007) arXiv:0707.3594 [hep-ph]ADSCrossRefGoogle Scholar
  28. 28.
    S.U. Chung et al., Phys. Rev. D 65, 072001 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    WA102 Collaboration (D. Barberis et al.), Phys. Lett. B 422, 399 (1998) arXiv:hep-ex/9801003 ADSCrossRefGoogle Scholar
  30. 30.
    Aachen-Bari-Bonn-CERN-Glasgow-Liverpool-Milan Collaboration (T.A. Armstrong et al.), Nucl. Phys. B 202, 1 (1982)ADSCrossRefGoogle Scholar
  31. 31.
    E852 Collaboration (J. Kuhn et al.), Phys. Lett. B 595, 109 (2004) arXiv:hep-ex/0401004 ADSCrossRefGoogle Scholar
  32. 32.
    A.V. Anisovich, C.J. Batty, D.V. Bugg, V.A. Nikonov, A.V. Sarantsev, Eur. Phys. J. C 71, 1511 (2011) arXiv:1009.1781 [hep-ex]ADSCrossRefGoogle Scholar
  33. 33.
    WA102 Collaboration (D. Barberis et al.), Phys. Lett. B 471, 440 (2000) arXiv:hep-ex/9912005 CrossRefGoogle Scholar
  34. 34.
    Crystal Barrel Collaboration (J. Adomeit et al.), Z. Phys. C 71, 227 (1996)CrossRefGoogle Scholar
  35. 35.
    C. Amsler, F.E. Close, Phys. Lett. B 353, 385 (1995) arXiv:hep-ph/9505219 ADSCrossRefGoogle Scholar
  36. 36.
    M. Strohmeier-Presicek, T. Gutsche, R. Vinh Mau, A. Faessler, Phys. Rev. D 60, 054010 (1999) arXiv:hep-ph/9904461 ADSCrossRefGoogle Scholar
  37. 37.
    W.J. Lee, D. Weingarten, Phys. Rev. D 61, 014015 (2000) arXiv:hep-lat/9910008 ADSCrossRefGoogle Scholar
  38. 38.
    F. Giacosa, T. Gutsche, V.E. Lyubovitskij, A. Faessler, Phys. Rev. D 72, 094006 (2005) arXiv:hep-ph/0509247 ADSCrossRefGoogle Scholar
  39. 39.
    H.Y. Cheng, C.K. Chua, K.F. Liu, Phys. Rev. D 74, 094005 (2006) arXiv:hep-ph/0607206 ADSCrossRefGoogle Scholar
  40. 40.
    T. Gutsche, S. Kuleshov, V.E. Lyubovitskij, I.T. Obukhovsky, Phys. Rev. D 94, 034010 (2016) arXiv:1605.01035 [hep-ph]ADSCrossRefGoogle Scholar
  41. 41.
    S. Janowski, F. Giacosa, D.H. Rischke, Phys. Rev. D 90, 114005 (2014) arXiv:1408.4921 [hep-ph]ADSCrossRefGoogle Scholar
  42. 42.
    W.I. Eshraim, S. Janowski, F. Giacosa, D.H. Rischke, Phys. Rev. D 87, 054036 (2013) arXiv:1208.6474 [hep-ph]ADSCrossRefGoogle Scholar
  43. 43.
    W.I. Eshraim, S. Janowski, A. Peters, K. Neuschwander, F. Giacosa, Acta Phys. Pol. Suppl. 5, 1101 (2012) arXiv:1209.3976 [hep-ph]CrossRefGoogle Scholar
  44. 44.
    W. Ochs, J. Phys. G 40, 043001 (2013) arXiv:1301.5183 [hep-ph]ADSCrossRefGoogle Scholar
  45. 45.
    V. Mathieu, N. Kochelev, V. Vento, Int. J. Mod. Phys. E 18, 1 (2009) arXiv:0810.4453 [hep-ph]ADSCrossRefGoogle Scholar
  46. 46.
    V. Crede, C.A. Meyer, Prog. Part. Nucl. Phys. 63, 74 (2009) arXiv:0812.0600 [hep-ex]ADSCrossRefGoogle Scholar
  47. 47.
    G. Mezzadri, PoS EPS-HEP2015, 423 (2015)Google Scholar
  48. 48.
    BESIII Collaboration (S. Marcello), JPS Conf. Proc. 10, 010009 (2016)Google Scholar
  49. 49.
    PANDA Collaboration (M.F.M. Lutz), arXiv:0903.3905 [hep-ex]
  50. 50.
    F. Krinner, for the COMPASS Collaboration, arXiv:1611.01388 [hep-ex]

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsJohann Wolfgang Goethe UniversityFrankfurt am MainGermany
  2. 2.Frankfurt Institute for Advanced StudiesFrankfurt am MainGermany
  3. 3.Institute of PhysicsJan Kochanowski UniversityKielcePoland

Personalised recommendations