Advertisement

Scaling of nuclear modification factors for hadrons and light nuclei

  • C. S. Zhou
  • Y. G. MaEmail author
  • S. Zhang
Regular Article - Theoretical Physics

Abstract.

The number of constituent quarks (NCQ) scaling for hadrons and the number of constituent nucleons (NCN) scaling for light nuclei are proposed for nuclear modification factors (\(R_{cp}\)) of hadrons and light nuclei, respectively, according to the experimental investigations in relativistic heavy-ion collisions. Based on the coalescence mechanism the scalings are performed for pions and protons at the quark level, and for light nuclei \(d(\bar{d})\) and 3He at the nucleonic level, respectively, formed in Au+Au and Pb+Pb collisions, and a nice scaling behaviour emerges. The NCQ or NCN scaling law of \(R_{cp}\) can be, respectively, taken as a probe for the quark or nucleon coalescence mechanism for the formation of hadron or light nuclei in relativistic heavy-ion collisions.

References

  1. 1.
    F. Karsch, Nucl. Phys. A 698, 199c (2002)ADSCrossRefGoogle Scholar
  2. 2.
    BRAHMS Collaboration (I. Arsene et al.), Nucl. Phys. A 757, 1 (2005)CrossRefGoogle Scholar
  3. 3.
    PHOBOS Collaboration (B.B. Back et al.), Nucl. Phys. A 757, 28 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    STAR Collaboration (J. Adames et al.), Nucl. Phys. A 757, 102 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    PHENIX Collaboration (S.S. Adler et al.), Nucl. Phys. A 757, 184 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    J. Tian, J.H. Chen, Y.G. Ma, X.Z. Cai, F. Jin, G.L. Ma, S. Zhang, C. Zhong, Phys. Rev. C 79, 067901 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    N. Yu, F. Liu, K. Wu, Phys. Rev. C 90, 024913 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    G.Y. Shao, M. Colonna, M. Di Toro, Y. Liu, B. Liu, Nucl. Sci. Tech. 24, 050523 (2013)Google Scholar
  9. 9.
    F.M. Liu, Nucl. Sci. Tech. 24, 050524 (2013)Google Scholar
  10. 10.
    Y. Hu, Z. Su, W. Zhang, Nucl. Sci. Tech. 24, 050522 (2013)Google Scholar
  11. 11.
    H. Wang, Z. Hou, X. Sun, Nucl. Sci. Tech. 25, 040502 (2014)Google Scholar
  12. 12.
    C.M. Ko, L.W. Chen, V. Greco, F. Li, Z.W. Lin, S. Plumari, T. Song, J. Xu, Nucl. Sci. Tech. 24, 050525 (2013)Google Scholar
  13. 13.
    C.M. Ko, F. Li, Nucl. Sci. Tech. 27, 140 (2016)CrossRefGoogle Scholar
  14. 14.
    Y.J. Ye, J.H. Chen, Y.G. Ma, S. Zhang, C. Zhong, Phys. Rev. C 93, 044904 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Y.F. Xu, Y.J. Ye, J.H. Chen, Y.G. Ma, S. Zhang, C. Zhong, Nucl. Sci. Tech. 27, 87 (2016)CrossRefGoogle Scholar
  16. 16.
    for the STAR Collaboration (B. Mohanty), J. Phys. G 38, 124023 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    STAR Collaboration (B.I. Abelev et al.), Phys. Lett. B 655, 104 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    G. Agakishiev et al., Phys. Rev. Lett. 108, 072301 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    STAR Collaboration (B.I. Abelev et al.), Science 328, 58 (2010)CrossRefGoogle Scholar
  20. 20.
    STAR Collaboration (H. Agakishiev et al.), Nature 473, 353 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 92, 052302 (2004)CrossRefGoogle Scholar
  22. 22.
    STAR Collaboration (B.I. Abelev), Phys. Rev. C 79, 034909 (2009)CrossRefGoogle Scholar
  23. 23.
    P. Braun-Munzinger, J. Stachel, Nature 448, 302 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 91, 072304 (2003)CrossRefGoogle Scholar
  25. 25.
    STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 91, 172302 (2003)CrossRefGoogle Scholar
  26. 26.
    J.D. Bjorken, FERMILAB-PUB-82-59-THY and Erratum (unpublished)Google Scholar
  27. 27.
    X.N. Wang, M. Gyulassy, Phys. Rev. Lett. 68, 1480 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    E. Wang, X.N. Wang, Phys. Rev. Lett. 87, 142301 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    G.L. Ma, Y.G. Ma, S. Zhang et al., Phys. Lett. B 647, 122 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    M. Nie, G. Ma, Nucl. Tech. 37, 100519 (2014) (in Chinese)Google Scholar
  31. 31.
    J.W. Cronin et al., Phys. Rev. Lett. 31, 1426 (1973)ADSCrossRefGoogle Scholar
  32. 32.
    J.W. Cronin et al., Phys. Rev. D 11, 3105 (1975)ADSCrossRefGoogle Scholar
  33. 33.
    STAR Collaboration (S.P. Horvat et al.), J. Phys.: Conf. Ser. 446, 012017 (2013)ADSGoogle Scholar
  34. 34.
    M. Lv, Y.G. Ma, G.Q. Zhang, J.H. Chen, D.Q. Fang, Phys. Lett. B 733, 105 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    M. Lv, Y.G. Ma, G.Q. Zhang, J.H. Chen, D.Q. Fang, Nucl. Tech. 37, 100517 (2014) (in Chinese)Google Scholar
  36. 36.
    S.A. Voloshin, Nucl. Phys. A 715, 379c (2003)ADSCrossRefGoogle Scholar
  37. 37.
    R. Scheibl, U. Heinz, Phys. Rev. C 59, 1585 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    STAR Collaboration (L. Adamczyk et al.), Phys. Rev. C 93, 021903(R) (2016)ADSCrossRefGoogle Scholar
  39. 39.
    ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044909 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    ALICE Collaboration (B. Abelev et al.), Phys. Lett. B 720, 52 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    STAR Collaboration (B.I. Abelev et al.), Phys. Rev. Lett. 97, 152301 (2006)CrossRefGoogle Scholar
  42. 42.
    ALICE Collaboration (B. Abelev et al.), Phys. Rev. Lett. 109, 252301 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044910 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    L. Xue, Y.G. Ma, J.H. Chen, S. Zhang, Phys. Rev. C 85, 064912 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    N. Shah, Y.G. Ma, J.H. Chen, S. Zhang, Phys. Lett. B 754, 6 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    T.Z. Yan, Y.G. Ma, Z.Z. Cai et al., Phys. Lett. B 638, 50 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    Y.G. Ma et al., Nucl. Phys. A 787, 611c (2007)ADSCrossRefGoogle Scholar
  48. 48.
    STAR Collaboration (L. Adamczyk et al.), Phys. Rev. C 94, 034908 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    Yongseok Oh, Che Ming Ko, Phys. Rev. C 76, 054910 (2007)CrossRefGoogle Scholar
  50. 50.
    Lilin Zhu, Che Ming Ko, Xuejiao Yin, Phys. Rev. C 92, 064911 (2015)ADSCrossRefGoogle Scholar
  51. 51.
    NA49 Collaboration (T. Anticic et al.), Phys. Rev. C 69, 024902 (2004)CrossRefGoogle Scholar
  52. 52.
    PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. C 69, 034909 (2004)CrossRefGoogle Scholar
  53. 53.
    PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. Lett. 94, 122302 (2005)CrossRefGoogle Scholar
  54. 54.
    ALICE Collaboration (J. Adam et al.), Phys. Rev. C 93, 024917 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    J. Wang, Y.G. Ma, G.Q. Zhang, W.Q. Shen, Phys. Rev. C 90, 054601 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    J. Wang, Y.G. Ma, G.Q. Zhang, W.Q. Shen, Nucl. Sci. Tech. 24, 030501 (2013)Google Scholar
  57. 57.
    STAR Collaboration (L. Adamczyk et al.), Nature 527, 345 (2015)ADSCrossRefGoogle Scholar
  58. 58.
    Z.Q. Zhang, Y.G. Ma, Nucl. Sci. Tech. 27, 152 (2016)CrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.ShanghaiTech UniversityShanghaiChina

Personalised recommendations