Advertisement

The impact of intrinsic charm on the parton distribution functions

  • Alireza AleedaneshvarEmail author
  • Muhammad Goharipour
  • Saeedeh Rostami
Regular Article - Theoretical Physics

Abstract.

In this work, we present a new investigation about the impact of intrinsic charm (IC) on the physical observables, in particular, on the heavy structure function \(F_{2}^{c}\). Since the IC distribution is dominant at large Bjorken variable x, normally, it is expected that it can be explored only at large x. But, by studying the correlation of the charm density in the proton with \(F_{2}^{c}\), we are going to show that the IC component can also be effective at low x. To investigate further, we perform three QCD global analyses of parton distribution functions (PDFs), by including the EMC \(F_{2}^{c}\) data that are recognized as a clear evidence for the existence of the intrinsic charm in the proton, and also by considering the IC component. Although the fit of the EMC data is extremely poor due to the data points with lower x-values, i.e. x < 0.05 , these analyses can give us new information about the impact of EMC data and IC contribution on the behaviour of PDFs.

References

  1. 1.
    S. Alekhin, J. Blumlein, S. Moch, Phys. Rev. D 89, 054028 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    NNPDF Collaboration (R.D. Ball et al.), JHEP 04, 040 (2015)Google Scholar
  3. 3.
    L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Eur. Phys. J. C 75, 204 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    P. Jimenez-Delgado, E. Reya, Phys. Rev. D 89, 074049 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    H1 and ZEUS Collaborations (H. Abramowicz et al.), Eur. Phys. J. C 75, 580 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    S. Dulat et al., Phys. Rev. D 93, 033006 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    A. Accardi, L.T. Brady, W. Melnitchouk, J.F. Owens, N. Sato, Phys. Rev. D 93, 114017 (2016) arXiv:1602.03154 [hep-ph]ADSCrossRefGoogle Scholar
  8. 8.
    C. Bourrely, J. Soffer, Nucl. Phys. A 941, 307 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    H. Khanpour, A.N. Khorramian, S.A. Tehrani, J. Phys. G 40, 045002 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)ADSCrossRefGoogle Scholar
  11. 11.
    V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972) (Yad. Fiz. 15Google Scholar
  12. 12.
    Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977) (Zh. Eksp. Teor. Fiz. 73ADSGoogle Scholar
  13. 13.
    S.J. Brodsky, A. Kusina, F. Lyonnet, I. Schienbein, H. Spiesberger, R. Vogt, Adv. High Energy Phys. 2015, 231547 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    S.J. Brodsky, P. Hoyer, C. Peterson, N. Sakai, Phys. Lett. B 93, 451 (1980)ADSCrossRefGoogle Scholar
  15. 15.
    S.J. Brodsky, C. Peterson, N. Sakai, Phys. Rev. D 23, 2745 (1981)ADSCrossRefGoogle Scholar
  16. 16.
    A.W. Thomas, Phys. Lett. B 126, 97 (1983)ADSCrossRefGoogle Scholar
  17. 17.
    W. Melnitchouk, A.W. Thomas, Phys. Rev. D 47, 3794 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    W. Melnitchouk, A.W. Thomas, Phys. Lett. B 414, 134 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    T.J. Hobbs, J.T. Londergan, W. Melnitchouk, Phys. Rev. D 89, 074008 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    J. Pumplin, Phys. Rev. D 73, 114015 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    M. Salajegheh, Phys. Rev. D 92, 074033 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    J.J. Aubert et al., Nucl. Phys. B 213, 31 (1983)ADSCrossRefGoogle Scholar
  23. 23.
    European Muon Collaboration (J.J. Aubert et al.), Phys. Lett. B 110, 73 (1982)ADSCrossRefGoogle Scholar
  24. 24.
    A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    D0 Collaboration (V.M. Abazov et al.), Phys. Lett. B 719, 354 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    V.A. Bednyakov, M.A. Demichev, G.I. Lykasov, T. Stavreva, M. Stockton, Phys. Lett. B 728, 602 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    S. Rostami, A. Khorramian, A. Aleedaneshvar, M. Goharipour, J. Phys. G 43, 055001 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    P.H. Beauchemin, V.A. Bednyakov, G.I. Lykasov, Y.Y. Stepanenko, Phys. Rev. D 92, 034014 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    T. Boettcher, P. Ilten, M. Williams, Phys. Rev. D 93, 074008 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    G. Bailas, V.P. Goncalves, Eur. Phys. J. C 76, 105 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    LHCb Collaboration (R. Aaij et al.), Nucl. Phys. B 871, 1 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    N.Y. Ivanov, Nucl. Phys. B 814, 142 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    L.N. Ananikyan, N.Y. Ivanov, Nucl. Phys. B 762, 256 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    L.N. Ananikyan, N.Y. Ivanov, Phys. Rev. D 75, 014010 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    P.M. Nadolsky, H.L. Lai, Q.H. Cao, J. Huston, J. Pumplin, D. Stump, W.K. Tung, C.-P. Yuan, Phys. Rev. D 78, 013004 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    S. Dulat, T.J. Hou, J. Gao, J. Huston, J. Pumplin, C. Schmidt, D. Stump, C.-P. Yuan, Phys. Rev. D 89, 073004 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    B.W. Harris, J. Smith, R. Vogt, Nucl. Phys. B 461, 181 (1996)ADSCrossRefGoogle Scholar
  38. 38.
    P. Jimenez-Delgado, T.J. Hobbs, J.T. Londergan, W. Melnitchouk, Phys. Rev. Lett. 114, 082002 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    L.W. Whitlow, E.M. Riordan, S. Dasu, S. Rock, A. Bodek, Phys. Lett. B 282, 475 (1992)ADSCrossRefGoogle Scholar
  40. 40.
    S.J. Brodsky, S. Gardner, Phys. Rev. Lett. 116, 019101 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    H. Abramowicz et al., Eur. Phys. J. C 73, 2311 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    D. Boer, arXiv:1108.1713 [nucl-th]
  43. 43.
    R.S. Thorne, R.G. Roberts, Phys. Rev. D 57, 6871 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    S. Alekhin et al., Eur. Phys. J. C 75, 304 (2015)ADSCrossRefGoogle Scholar
  45. 45.
    H1 and ZEUS Collaborations (F.D. Aaron et al.), JHEP 01, 109 (2010)ADSGoogle Scholar
  46. 46.
    NuTeV Collaboration (D. Mason et al.), Phys. Rev. Lett. 99, 192001 (2007)CrossRefGoogle Scholar
  47. 47.
    D. de Florian, R. Sassot, P. Zurita, M. Stratmann, Phys. Rev. D 85, 074028 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    S.J. Brodsky, Novel QCD Physics at High x, presented at the 4th International Workshop on Nucleon Structure at Large Bjorken x (HiX2014), Frascati, Italy, November 17--21, 2014, http://www.lnf.infn.it/conference/HiX2014/
  49. 49.
    E. Hoffmann, R. Moore, Z. Phys. C 20, 71 (1983)ADSGoogle Scholar
  50. 50.
    V. Bertone, R. Frederix, S. Frixione, J. Rojo, M. Sutton, JHEP 08, 166 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    T. Carli, D. Clements, A. Cooper-Sarkar, C. Gwenlan, G.P. Salam, F. Siegert, P. Starovoitov, M. Sutton, Eur. Phys. J. C 66, 503 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    J. Alwall et al., JHEP 07, 079 (2014)ADSCrossRefGoogle Scholar
  53. 53.
    J.M. Campbell, R.K. Ellis, Nucl. Phys. Proc. Suppl. 205-206, 10 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    J. Pumplin, D. Stump, R. Brock, D. Casey, J. Huston, J. Kalk, H.L. Lai, W.K. Tung, Phys. Rev. D 65, 014013 (2001) arXiv:hep-ph/0101032 ADSCrossRefGoogle Scholar
  55. 55.
    H1 Collaboration (A. Aktas et al.), Phys. Lett. B 653, 134 (2007) arXiv:0706.3722 [hep-ex]ADSCrossRefGoogle Scholar
  56. 56.
    ZEUS Collaboration (S. Chekanov et al.), Nucl. Phys. B 765, 1 (2007) arXiv:hep-ex/0608048 ADSCrossRefGoogle Scholar
  57. 57.
    ZEUS Collaboration (S. Chekanov et al.), Phys. Lett. B 547, 164 (2002) arXiv:hep-ex/0208037 ADSCrossRefGoogle Scholar
  58. 58.
    BCDMS Collaboration (A.C. Benvenuti et al.), Phys. Lett. B 223, 485 (1989)ADSCrossRefGoogle Scholar
  59. 59.
    New Muon Collaboration (M. Arneodo et al.), Nucl. Phys. B 487, 3 (1997)ADSCrossRefGoogle Scholar
  60. 60.
    W.G. Seligman, C.G. Arroyo, L. de Barbaro, P. de Barbaro, A.O. Bazarko, R.H. Bernstein, A. Bodek, T. Bolton et al., Phys. Rev. Lett. 79, 1213 (1997)ADSCrossRefGoogle Scholar
  61. 61.
    D0 Collaboration (V.M. Abazov et al.), Phys. Rev. D 76, 012003 (2007)CrossRefGoogle Scholar
  62. 62.
    D0 Collaboration (V.M. Abazov et al.), Phys. Rev. Lett. 112, 151803 (2014) 114ADSCrossRefGoogle Scholar
  63. 63.
    CDF Collaboration (T.A. Aaltonen et al.), Phys. Lett. B 692, 232 (2010)ADSCrossRefGoogle Scholar
  64. 64.
    CDF Collaboration (T. Aaltonen et al.), Phys. Rev. Lett. 102, 181801 (2009)CrossRefGoogle Scholar
  65. 65.
    ATLAS Collaboration (G. Aad et al.), Eur. Phys. J. C 73, 2509 (2013)ADSCrossRefGoogle Scholar
  66. 66.
    ATLAS Collaboration (G. Aad et al.), Phys. Rev. D 86, 014022 (2012)ADSCrossRefGoogle Scholar
  67. 67.
    ATLAS Collaboration (G. Aad et al.), Phys. Rev. D 85, 072004 (2012)ADSCrossRefGoogle Scholar
  68. 68.
    CMS Collaboration (S. Chatrchyan et al.), Phys. Rev. Lett. 109, 111806 (2012)ADSCrossRefGoogle Scholar
  69. 69.
    CMS Collaboration (S. Chatrchyan et al.), Phys. Rev. D 85, 032002 (2012)ADSCrossRefGoogle Scholar
  70. 70.
    CMS Collaboration (S. Chatrchyan et al.), Phys. Rev. D 90, 032004 (2014)ADSCrossRefGoogle Scholar
  71. 71.
    NNPDF Collaboration (R.D. Ball), A determination of the charm content of the proton, arXiv:1605.06515 [hep-ph]

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alireza Aleedaneshvar
    • 1
    Email author
  • Muhammad Goharipour
    • 1
  • Saeedeh Rostami
    • 1
  1. 1.Physics DepartmentSemnan UniversitySemnanIran

Personalised recommendations