Advertisement

HIE-ISOLDE, the project and the physics opportunities

  • M. J. G. BorgeEmail author
  • K. Riisager
Review

Abstract.

The ISOLDE facility at CERN offers the largest selection of ISOL beams today. The overall aim of the HIE-ISOLDE project is to enlarge the physics domains achievable with these beams, in particular by raising the maximum energy of post-accelerated beams to more than 10MeV/u. An outline of the history of the project is followed by a succinct description of the superconducting linac chosen for acceleration and an overview of the parts of the project aiming to the improvement of the beam quality and intensity. Concrete examples are given of experiments that will be performed at HIE-ISOLDE.

Supplementary material

10050_2016_703_MOESM1_ESM.pdf (60 kb)
Supplementary material

References

  1. 1.
    C. Fahlander, B. Jonson (Editors), Nobel Symposium 152: Physics with Radioactive Beams, Phys. Scr. T 152 (2013)Google Scholar
  2. 2.
    Y. Blumenfeld, T. Nilsson, P. Van Duppen, Phys. Scr. T 152, 014023 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    ISOLDE 50th Anniversary Workshop, December 2014, contributions available at http://indico.cern.ch/event/334117/
  4. 4.
    P.G. Hansen, in The History of CERN, edited by J. Krige, Vol. III (North-Holland, Amsterdam, 1996) p. 327Google Scholar
  5. 5.
    D. Forkel-Wirth, G. Bollen (Editors), ISOLDE -- a laboratory portrait, Hyperfine Interact. 129 (2000)Google Scholar
  6. 6.
    B. Jonson, K. Riisager, The ISOLDE facility, Scholarpedia 5, issue No. 7, 9742 (2010) DOI:10.4249/scholarpedia.9742
  7. 7.
    A. Herlert, Nucl. Phys. News 20, 5 (2010)CrossRefGoogle Scholar
  8. 8.
    D. Habs, Radioactive beam experiments at ISOLDE: Coulomb excitation and neutron transfer reactions of exotic nuclei, Proposal to the ISOLDE committee (1994) CERN/ISC 94-25 ISC/P68Google Scholar
  9. 9.
    N. Orr, J. Phys. G 38, 020301 (2011)CrossRefGoogle Scholar
  10. 10.
    P. Van Duppen, K. Riisager, J. Phys. G 38, 024005 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    D. Habs et al., Hyperfine Interact. 129, 43 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    D. Voulot et al., Nucl. Instrum. Methods B 266, 4103 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    L.P. Gaffney et al., Nature 497, 199 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    M. Lindroos et al., Nucl. Instrum. Methods B 266, 4687 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Nuclear Physics and Astrophysics at CERN, October 2005, contributions available at http://indico.cern.ch/event/422434/
  16. 16.
    M. Lindroos, T. Nilsson (Editors), HIE-ISOLDE: the technical options, CERN Yellow Report CERN-2006-013 (2006) http://cds.cern.ch/record/1001782/files/CERN-2006-013.pdf
  17. 17.
    K. Riisager, P. Butler, M. Huyse, R. Krücken (Editors), HIE-ISOLDE: the scientific opportunities, CERN Yellow Report CERN-2007-008 (2007) http://cdsweb.cern.ch/record/1078363/files/CERN-2007-008.pdf
  18. 18.
    New Opportunities in the Physics Landscape at CERN, May 2009, contributions available at https://indico.cern.ch/event/51128/
  19. 19.
    B.A. Marsh et al., Hyperfine Interact. 196, 129 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    V.N. Fedosseev et al., Rev. Sci. Instrum. 83, 02A903 (2012)CrossRefGoogle Scholar
  21. 21.
    F. Ames, J. Cederkall, T. Sieber, F. Wenander (Editors), The REX-ISOLDE facility: Design and Commissioning Report, CERN Report CERN-2005-009 (2005) https://cds.cern.ch/record/895873
  22. 22.
    P. Schmidt et al., Nucl. Phys. A 701, 550c (2002)ADSCrossRefGoogle Scholar
  23. 23.
    H. Raimbault-Hartmann et al., Nucl. Instrum. Methods B 216, 378 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    F. Wenander, REXEBIS, the electron beam ion source for the REX-ISOLDE project: Design and simulations, CERN OPEN-2000-320 (2000)Google Scholar
  25. 25.
    A.O. Nier, T.R. Roberts, Phys. Rev. 81, 507 (1951)ADSCrossRefGoogle Scholar
  26. 26.
    O. Kester et al., Nucl. Instrum. Methods B 204, 20 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    T. Sieber, Entwicklung von 4-Rod-und IH-Radio Frequenz Quadrupol(RFQ)-Beschleunigern für radioaktive Ionenstrahlen bei REX-ISOLDE und MAFF, PhD Thesis, LMU München, May 2001Google Scholar
  28. 28.
    S. Emhofer, Aufbau und Vermessung der HF-Eigenschaften des REX-ISOLDE-IH-Beschleunigern, Diploma Thesis, LMU München, December 1999Google Scholar
  29. 29.
    H. Podlech, Proceedings of the Seventh European Particle Accelerator Conference, Vienna, 2000 (EPS, Geneva, 2000) p. 572Google Scholar
  30. 30.
    K.U. Kühnel, Diploma Thesis, IAP Frankfurt, 1999Google Scholar
  31. 31.
    U. Ratzinger, N. Angert, J. Klabunde, GSI Scientific Report, 1987Google Scholar
  32. 32.
    D. Warner, CERN Heavy-Ion Facility Design Report, CERN 93-01Google Scholar
  33. 33.
    R. von Hahn et al., Nucl. Instrum. Methods A 328, 270 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    O. Kester, Proceedings of the Eighth European Particle Accelerator Conference, Paris, 2002 (EPS, Geneva, 2002) p. 915Google Scholar
  35. 35.
    R. Catherall, HIE-ISOLDE Design Study, in preparationGoogle Scholar
  36. 36.
    M.J.G. Borge et al., JPS Conf. Proc. 6, 030109 (2015)Google Scholar
  37. 37.
    Y. Kadi, Y. Blumenfeld, R. Catherall, W. Delsolaro Venturini, M.J.G. Borge, HIE-ISOLDE: The future of radioactive beam physics at CERN, in pressGoogle Scholar
  38. 38.
    M.J.G. Borge, Nucl. Instrum. Methods B 376, 408 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    M.A. Fraser, R.M. Jones, M. Pasini, Phys. Rev. ST Accel. Beams 14, 020102 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    M.A. Fraser, Beam dynamics studies of the ISOLDE post-accelerator of the high intensity and high energy upgrade, PhD Thesis, University of Manchester, EuCARD Series, Vol. 3 (2012)Google Scholar
  41. 41.
    C. Benvenuti, N. Circelli, M. Hauer, Appl. Phys. Lett. 45, 583 (1984)ADSCrossRefGoogle Scholar
  42. 42.
    C. Benvenuti, Conference Record of the IEEE Particle Accelerator Conference, PAC1991, Vol. 2 (IEEE, 1991) p. 1023Google Scholar
  43. 43.
    W. Venturini Delsolaro, Nb sputtered Quarter Wave Resonators for HIE ISOLDE, in Proceedings of SRF 2013, Paris, France, http://accelconf.web.cern.ch/AccelConf/SRF2013/papers/weioa03.pdf
  44. 44.
    J.A. Rodriguez, First operational experience of HIE-ISOLDE, in Proceedings of IPAC'16, available at www.jacow.org
  45. 45.
    F. Zocca et al., Nucl. Instrum. Methods A 672, 21 (2012)ADSCrossRefGoogle Scholar
  46. 46.
  47. 47.
    Y. Blumenfeld, P. Butler, J. Cornell, G. Fortuna, M. Lindroos, Int. J. Mod. Phys. E 18, 1960 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    Linac4 Technical Design Report, CERN-AB-2006-084 ABP/RF (2006)Google Scholar
  49. 49.
    M. Vretenar, Status and Plans for LINAC4 installation and commissioning, in Proceedings of IPAC'14, Dresden Germany, ISBN 978-3-95450-132-8, http://accelconf.web.cern.ch/accelconf/IPAC2014/papers/thpme048.pdf
  50. 50.
    G. Arduini, Proceedings of the Chamonix 2010 Workshop on LHC performance, CERN-ATS-2010-026 228 (2010)Google Scholar
  51. 51.
    R. Garoby, Plans for the upgrade of the LHC injectors, IPAC2012 Conf. Proc. C1205201, TUXA02 (2012) (see http://www.jacow.org)
  52. 52.
    J. Coupard (Editors), LHC Injectors Upgrade, TDR, Vol. I: protons, CERN Accelerator Report, CERN-ACC-2014-0337 (2014)Google Scholar
  53. 53.
    J.-J. Gaimard et al., Nucl. Phys. A 351, 70 (1991)CrossRefGoogle Scholar
  54. 54.
    A. Ferrari, P.R. Sala, A. Fasso, J. Ranft, CERN-2005-10, INFN/TC-05/11, SLAC-R-773 (2005)Google Scholar
  55. 55.
    R. Catherall et al., Nucl. Instrum. Methods B 317, 204 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    B.A. Marsh et al., Nucl. Instrum. Methods B 317, 550 (2013)ADSCrossRefGoogle Scholar
  57. 57.
    B.A. Marsh, Rev. Sci. Instrum. 85, 02B923 (2014)CrossRefGoogle Scholar
  58. 58.
    R.N. Wolf et al., Int. J. Mass. Spectrom. 349-350, 123 (2013)ADSCrossRefGoogle Scholar
  59. 59.
    A. Shornikov, A. Pikin, R. Scrivens, F. Wenander, Nucl. Instrum. Methods B 317, 395 (2013)ADSCrossRefGoogle Scholar
  60. 60.
    F.J.C. Wenander, CERN Yellow Report, CERN-2013-007 DOI:10.5170/CERN-2013-007.351 p. 351
  61. 61.
    N. Warr et al., Eur. Phys. J. A 49, 40 (2013)ADSCrossRefGoogle Scholar
  62. 62.
    V. Bildstein et al., Eur. Phys. J. A 48, 85 (2012)ADSCrossRefGoogle Scholar
  63. 63.
    P. Dendooven, AIP Conf. Proc. 831, 39 (2006)ADSCrossRefGoogle Scholar
  64. 64.
    N. Imai et al., Phys. Rev. C 90, 011302 (2014)ADSCrossRefGoogle Scholar
  65. 65.
    S. Beceiro-Novo, T. Ahn, D. Bazin, W. Mittig, Prog. Part. Nucl. Phys. 84, 124 (2015)ADSCrossRefGoogle Scholar
  66. 66.
    C. Demonchy et al., Nucl. Instrum. Methods A 573, 145 (2007)ADSCrossRefGoogle Scholar
  67. 67.
    J. Pancin et al., Nucl. Instrum. Methods A 735, 532 (2014)ADSCrossRefGoogle Scholar
  68. 68.
    K. Miernik et al., Nucl. Instrum. Methods A 581, 194 (2007)ADSCrossRefGoogle Scholar
  69. 69.
    J.C. Lighthall et al., Nucl. Instrum. Methods A 622, 97 (2010)ADSCrossRefGoogle Scholar
  70. 70.
    R. Raabe, private communicationGoogle Scholar
  71. 71.
    H. Törnqvist et al., Nucl. Instrum. Methods B 317, 685 (2013)ADSCrossRefGoogle Scholar
  72. 72.
    P. Papadakis et al., JPS Conf. Proc. 6, 030023 (2015)Google Scholar
  73. 73.
    P. Papadakis et al., J. Phys.: Conf. Ser. 312, 052017 (2011)ADSGoogle Scholar
  74. 74.
    I. Stefanescu et al., Phys. Rev. Lett. 98, 122701 (2007)ADSCrossRefGoogle Scholar
  75. 75.
    O. Sorlin, M.-G. Porquet, Prog. Part. Nucl. Phys. 61, 602 (2008)ADSCrossRefGoogle Scholar
  76. 76.
    R. Kanungo, Phys. Scr. T 152, 014002 (2013)ADSCrossRefGoogle Scholar
  77. 77.
    K. Heyde, J.L. Wood, Rev. Mod. Phys. 83, 1467 (2011)ADSCrossRefGoogle Scholar
  78. 78.
    B. Jonson, Phys. Rep. 389, 1 (2004)ADSCrossRefGoogle Scholar
  79. 79.
    A.S. Jensen et al., Rev. Mod. Phys. 76, 215 (2004)ADSCrossRefGoogle Scholar
  80. 80.
    I. Tanihata, H. Savajols, R. Kanungo, Prog. Part. Nucl. Phys. 68, 215 (2013)ADSCrossRefGoogle Scholar
  81. 81.
    K. Riisager, Phys. Scr. T 152, 014001 (2013)ADSCrossRefGoogle Scholar
  82. 82.
    L.V. Chulkov, B. Jonson, M.V. Zhukov, Eur. Phys. J. A 51, 97 (2015)ADSCrossRefGoogle Scholar
  83. 83.
    J. Dobaczewski, I. Hamamoto, W. Nazarewicz, J.A. Sheikh, Phys. Rev. Lett. 72, 981 (1994)ADSCrossRefGoogle Scholar
  84. 84.
    T. Auman, T. Nakamura, Phys. Scr. T 152, 014012 (2013)ADSCrossRefGoogle Scholar
  85. 85.
    O. Niedermaier et al., Phys. Rev. Lett. 94, 172501 (2005)ADSCrossRefGoogle Scholar
  86. 86.
    M. Seidlitz et al., Phys. Lett. B 700, 181 (2011)ADSCrossRefGoogle Scholar
  87. 87.
    P. Doornenbal et al., Phys. Rev. Lett. 111, 212502 (2013)ADSCrossRefGoogle Scholar
  88. 88.
    E. Caurier, F. Nowacki, A. Poves, Phys. Rev. C 90, 014302 (2014)ADSCrossRefGoogle Scholar
  89. 89.
    J. Van de Walle et al., Phys. Rev. Lett. 99, 142501 (2007)ADSCrossRefGoogle Scholar
  90. 90.
    A. Ekström et al., Phys. Rev. Lett. 101, 012502 (2008)ADSCrossRefGoogle Scholar
  91. 91.
    N. Bree et al., Phys. Rev. Lett. 112, 162701 (2014)ADSCrossRefGoogle Scholar
  92. 92.
    T. Kröll, EPJ Web of Conferences 66, 02059 (2014)CrossRefGoogle Scholar
  93. 93.
    M. Zielińska et al., Eur. Phys. J. A 52, 99 (2016)ADSCrossRefGoogle Scholar
  94. 94.
    A.M. Hurst et al., Phys. Rev. Lett. 98, 072501 (2007)ADSCrossRefGoogle Scholar
  95. 95.
    N. Pietralla, P. von Brentano, A.F. Lisetskiy, Prog. Part. Nucl. Phys. 60, 225 (2008)ADSCrossRefGoogle Scholar
  96. 96.
    B. Bucher et al., Phys. Rev. Lett. 116, 112503 (2016)ADSCrossRefGoogle Scholar
  97. 97.
    R.C. Johnson, J. Phys. G 41, 094005 (2014)ADSCrossRefGoogle Scholar
  98. 98.
    K.L. Jones, Phys. Scr. T 152, 014020 (2013)ADSCrossRefGoogle Scholar
  99. 99.
    V. Lapoux, N. Alamanos, Eur. Phys. J. A 51, 19 (2015)CrossRefGoogle Scholar
  100. 100.
    P.G. Hansen, J.A. Tostevin, Annu. Rev. Nucl. Part. Sci. 53, 219 (2003)ADSCrossRefGoogle Scholar
  101. 101.
    V.R. Pandharipande, I. Sick, P.K.A. deWitt Huberts, Rev. Mod. Phys. 69, 981 (1997)ADSCrossRefGoogle Scholar
  102. 102.
    B.P. Kay, J.P. Schiffer, S.J. Freeman, Phys. Rev. Lett. 111, 042502 (2013)ADSCrossRefGoogle Scholar
  103. 103.
    N.K. Timofeyuk, J. Phys. G 41, 094008 (2014)ADSCrossRefGoogle Scholar
  104. 104.
    N.K. Timofeyuk, Phys. Rev. C 88, 044315 (2013)ADSCrossRefGoogle Scholar
  105. 105.
    H.B. Jeppesen et al., Phys. Lett. B 642, 449 (2006)ADSCrossRefGoogle Scholar
  106. 106.
    E. Tengborn et al., Phys. Rev. C 84, 064616 (2011)ADSCrossRefGoogle Scholar
  107. 107.
    J.G. Johansen et al., Phys. Rev. C 88, 044619 (2013)ADSCrossRefGoogle Scholar
  108. 108.
    K. Wimmer et al., Phys. Rev. Lett. 105, 252501 (2010)ADSCrossRefGoogle Scholar
  109. 109.
    J. Diriken et al., Phys. Lett. B 736, 533 (2014)ADSCrossRefGoogle Scholar
  110. 110.
    J.S. Winfield, W.N. Catford, N.A. Orr, Nucl. Instrum. Methods A 396, 147 (1997)ADSCrossRefGoogle Scholar
  111. 111.
    W.N. Catford, The Euroschool on Exotic Beams, Vol. IV (Springer, 2014) pp. 67--122Google Scholar
  112. 112.
    H. Lenske, G. Schrieder, Eur. Phys. J. A 2, 41 (1998)ADSCrossRefGoogle Scholar
  113. 113.
    A. Bonaccorso, Phys. Scr. T 152, 014019 (2013)ADSCrossRefGoogle Scholar
  114. 114.
    L. Corradi, G. Pollarolo, S. Szilner, J. Phys. G 36, 113101 (2009)ADSCrossRefGoogle Scholar
  115. 115.
    S. Bottoni et al., Acta Phys. Pol. B 45, 343 (2014)CrossRefGoogle Scholar
  116. 116.
    N. Keeley, N. Alamanos, K.W. Kemper, K. Rusek, Prog. Part. Nucl. Phys. 63, 396 (2009)ADSCrossRefGoogle Scholar
  117. 117.
    A. Di Pietro et al., Phys. Rev. Lett. 105, 22701 (2010)ADSCrossRefGoogle Scholar
  118. 118.
    A. Diaz-Torres, A.M. Moro, Phys. Lett. B 733, 89 (2014)ADSCrossRefGoogle Scholar
  119. 119.
    J. José, C. Iliadis, Rep. Prog. Phys. 74, 096901 (2011)ADSCrossRefGoogle Scholar
  120. 120.
    M. Wiedeking et al., Phys. Rev. Lett. 108, 162503 (2012)ADSCrossRefGoogle Scholar
  121. 121.
    L.F. Canto, P.R.S. Gomes, R. Donangelo, J. Lubian, M.S. Hussein, Phys. Rep. 596, 1 (2015)ADSMathSciNetCrossRefGoogle Scholar
  122. 122.
    B. Blank, M.J.G. Borge, Prog. Part. Nucl. Phys. 60, 403 (2008)ADSCrossRefGoogle Scholar
  123. 123.
    M. Pfützner, M. Karny, L. Grigorenko, K. Riisager, Rev. Mod. Phys. 84, 567 (2012)ADSCrossRefGoogle Scholar
  124. 124.
    M.J.G. Borge, Phys. Scr. T 152, 014013 (2013)ADSCrossRefGoogle Scholar
  125. 125.
    M. Pfützner et al., Phys. Rev. C 92, 014316 (2015)ADSCrossRefGoogle Scholar
  126. 126.
    J. Büscher, PhD Thesis, KU Leuven (2010) unpublishedGoogle Scholar
  127. 127.
    A. Illana et al., Phys. Rev. C 89, 054316 (2014)ADSCrossRefGoogle Scholar
  128. 128.
    B. Cheal, K.T. Flanagan, J. Phys. G 37, 113101 (2010)ADSCrossRefGoogle Scholar
  129. 129.
    K. Blaum, J. Dilling, W. Nörtershäuser, Phys. Scr. T 152, 014017 (2013)ADSCrossRefGoogle Scholar
  130. 130.
    P. Campbell, I.D. Moore, M.R. Pearson, Prog. Part. Nucl. Phys. 86, 127 (2016)ADSCrossRefGoogle Scholar
  131. 131.
    S. Rothe et al., Nature Commun. 4, 1835 (2013)ADSCrossRefGoogle Scholar
  132. 132.
    E. Mané et al., Eur. Phys. J. A 42, 503 (2009)ADSCrossRefGoogle Scholar
  133. 133.
    K. Flanagan, Nucl. Phys. News 23, issue No. 2, 24 (2013)CrossRefGoogle Scholar
  134. 134.
    J. Van de Walle et al., Phys. Rev. C 79, 0142309 (2009)CrossRefGoogle Scholar
  135. 135.
    C. Louchart et al., Phys. Rev. C. 87, 054302 (2013)ADSCrossRefGoogle Scholar
  136. 136.
    A. Illana, in preparationGoogle Scholar
  137. 137.
    The 2015 NSAC Long Range Plan for Nuclear Science, available at http://science.energy.gov/np/nsac/reports/
  138. 138.
    NuPECC Long Range Plan 2010: Perspectives of Nuclear Physics in Europe, available at http://nupecc.org
  139. 139.
    M. Grieser et al., Eur. Phys. J. ST 207, 1 (2012)CrossRefGoogle Scholar
  140. 140.
    P. Butler et al., Nucl. Instrum. Methods B 376, 270 (2016)ADSCrossRefGoogle Scholar
  141. 141.
    P. Butler et al., Acta Phys. Pol. B 47, 627 (2016)ADSCrossRefGoogle Scholar
  142. 142.

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.ISOLDE, EP Department, CERNGeneva 23Switzerland
  2. 2.Instituto de Estructura de la Materia, CSICMadridSpain
  3. 3.Department of Physics and AstronomyAarhus UniversityAarhus CDenmark

Personalised recommendations