Advertisement

Ultracold neutron detection with 6Li-doped glass scintillators

NANOSC: A fast ultracold neutron detector for the nEDM experiment at the Paul Scherrer Institute
  • G. Ban
  • G. Bison
  • K. Bodek
  • Z. Chowdhuri
  • P. Geltenbort
  • W. C. Griffith
  • V. Hélaine
  • R. Henneck
  • M. Kasprzak
  • Y. Kermaidic
  • K. Kirch
  • S. Komposch
  • P. A. Koss
  • A. Kozela
  • J. Krempel
  • B. Lauss
  • T. LefortEmail author
  • Y. Lemière
  • A. Mtchedlishvili
  • M. Musgrave
  • O. Naviliat-Cuncic
  • F. M. Piegsa
  • E. Pierre
  • G. Pignol
  • G. Quéméner
  • M. Rawlik
  • D. Ries
  • D. Rebreyend
  • S. Roccia
  • G. Rogel
  • P. Schmidt-Wellenburg
  • N. Severijns
  • E. Wursten
  • J. Zejma
  • G. Zsigmond
Special Article - Tools for Experiment and Theory

Abstract.

This paper summarizes the results from measurements aiming to characterize ultracold neutron detection with 6Li-doped glass scintillators. Single GS10 or GS20 scintillators, with a thickness of 100-200μm, fulfill the ultracold neutron detection requirements with an acceptable neutron-gamma discrimination. This discrimination is clearly improved with a stack of two scintillators: a 6Li-depleted glass bonded to a 6Li-enriched glass. The technique of optical contact bonding is used between the two glasses in order to eliminate the need for optical glue or grease between them. Relative to a 3He Strelkov gas detector, the scintillator’s detection efficiency is lower for UCN energies close to the scintillator’s Fermi potential (85-100 neV), but becomes larger at higher UCN energies. Coupled to a digital data acquisition system, counting rates up to a few 105 counts/s can be handled. A detector based on such a scintillator stack arrangement was built and has been used in the neutron electric dipole moment experiment at the Paul Scherrer Institute since 2010. Its response for routine runs of the neutron electric dipole moment experiment is presented.

References

  1. 1.
    B. Lauss, Hyperfine Interact. 21, 211 (2012)Google Scholar
  2. 2.
    B. Lauss, Phys. Proc. 51, 98 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    O. Zimmer et al., Phys. Rev. Lett. 107, 134801 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    U. Trinks et al., Nucl. Instrum. Methods Phys. Res. A 440, 666 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Masuda et al., Phys. Rev. Lett. 89, 284801 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    A. Saunders et al., Phys. Lett. B 593, 55 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    A.P. Serebrov et al., Nucl. Instrum. Methods Phys. Res. A 611, 276 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    C.L. Morris et al., Nucl. Instrum. Methods Phys. Res. A 599, 248 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    M. Klein, Ch. Schmidt, Nucl. Instrum. Methods Phys. Res. A 628, 9 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    D.J. Salvat et al., Nucl. Instrum. Methods Phys. Res. A 691, 109 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    C.A. Baker et al., Nucl. Instrum. Methods Phys. Res. A 487, 511 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    C.A. Baker et al., Nucl. Instrum. Methods Phys. Res. A 501, 517 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    M. Lasakov et al., J. Res. Natl. Inst. Stand. Technol. 110, 289 (2005)CrossRefGoogle Scholar
  14. 14.
    Th. Lauer et al., Eur. Phys. J. A 47, 150 (2011)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    G. Ban et al., J. Res. Natl. Inst. Stand. Technol. 110, 283 (2005)CrossRefGoogle Scholar
  16. 16.
    G. Ban et al., Nucl. Instrum. Methods Phys. Res. A 611, 280 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Oshima et al., Prog. Nucl. Sci. Technol. 1, 296 (2011)CrossRefGoogle Scholar
  18. 18.
    L. Göltl et al., Eur. Phys. J. A 49, 9 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    B. Jamieson et al., Nucl. Instrum. Methods Phys. Res. A 790, 6 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    J. Jakubek et al., Nucl. Instrum. Methods Phys. Res. A 600, 651 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    S. Kawasaki et al., Nucl. Instrum. Methods Phys. Res. A 615, 42 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    S. Baessler et al., C. R. Phys. 12, 729 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    F. Atchison et al., Nucl. Instrum. Methods Phys. Res. A 608, 144 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    J.A. Dianoux, G. Lander, Neutron Data Booklet (Institut Laue Langevin, 2001)Google Scholar
  25. 25.
    G. Rogel, PhD Thesis, University of Caen Normandy (2009)Google Scholar
  26. 26.
    Applied Scintillation Technologies, Phosphor/Scintillator Datasheet 41, 41a and 41bGoogle Scholar
  27. 27.
    Varley F. Sears, Neutron News 3, 29 (1992)CrossRefGoogle Scholar
  28. 28.
    C.W.E. van Eijk, Nucl. Instrum. Methods Phys. Res. A 460, 1 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    C.W.E. van Eijk, IEEE Trans. Nucl. Sci. 59, 2242 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    J.F. Ziegler, SRIM software, http://www.srim.org
  31. 31.
    B. Carniol, T. Chaventré, D. Cussol, D. Etasse, C. Fontbonne, J.M. Fontbonne, J. Hommet, H. Plard, J. Poincheval, FASTER, http://faster.in2p3.fr/
  32. 32.
    R. Brun, Fons Rademakers, Nucl. Instrum. Methods. Phys. Res. A 389, 81 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    M. Morgano et al., Nucl. Instrum. Methods Phys. Res. A 754, 46 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    C.A. Baker et al., Phys. Proc. 17, 159 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    S. Afach et al., Eur. Phys. J. A 51, 143 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    Hamamatsu, Photomultiplier R11187 datasheetGoogle Scholar
  37. 37.
    M. Daum et al., Nucl. Instrum. Methods Phys. Res. A 675, 103 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    C.A. Baker et al., Nucl. Instrum. Methods Phys. Res. A 736, 184 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    K. Mishima, private communicationGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • G. Ban
    • 1
  • G. Bison
    • 2
  • K. Bodek
    • 3
  • Z. Chowdhuri
    • 2
  • P. Geltenbort
    • 4
  • W. C. Griffith
    • 5
  • V. Hélaine
    • 1
    • 2
  • R. Henneck
    • 2
  • M. Kasprzak
    • 6
  • Y. Kermaidic
    • 7
  • K. Kirch
    • 2
    • 8
  • S. Komposch
    • 2
    • 8
  • P. A. Koss
    • 6
  • A. Kozela
    • 9
  • J. Krempel
    • 2
    • 8
  • B. Lauss
    • 2
  • T. Lefort
    • 1
    Email author
  • Y. Lemière
    • 1
  • A. Mtchedlishvili
    • 2
  • M. Musgrave
    • 5
  • O. Naviliat-Cuncic
    • 1
  • F. M. Piegsa
    • 8
  • E. Pierre
    • 1
  • G. Pignol
    • 7
  • G. Quéméner
    • 1
  • M. Rawlik
    • 8
  • D. Ries
    • 2
    • 8
  • D. Rebreyend
    • 7
  • S. Roccia
    • 10
  • G. Rogel
    • 1
  • P. Schmidt-Wellenburg
    • 2
  • N. Severijns
    • 6
  • E. Wursten
    • 6
  • J. Zejma
    • 3
  • G. Zsigmond
    • 2
  1. 1.Normandie Univ, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC CaenCaenFrance
  2. 2.Paul Scherrer InstituteVilligen-PSISwitzerland
  3. 3.Marian Smoluchowski Institute of PhysicsJagiellonian UniversityCracowPoland
  4. 4.Institut Laue-LangevinGrenobleFrance
  5. 5.Department of Physics and AstronomyUniversity of Sussex, FalmerBrightonUK
  6. 6.Instituut voor Kernen StralingsfysicaKatholieke Universiteit LeuvenLeuvenBelgium
  7. 7.LPSC, Université Grenoble Alpes, CNRS/IN2P3GrenobleFrance
  8. 8.ETH ZürichInstitute for Particle PhysicsZürichSwitzerland
  9. 9.Henryk Niedwodniczański Institute for Nuclear PhysicsCracowPoland
  10. 10.CSNSM, Université Paris Sud, CNRS/IN2P3OrsayFrance

Personalised recommendations