Particle production and chemical freezeout from the hybrid UrQMD approach at NICA energies

  • Abdel Nasser Tawfik
  • Loutfy I. Abou-Salem
  • Asmaa G. Shalaby
  • Mahmoud Hanafy
  • Alexander Sorin
  • Oleg Rogachevsky
  • Werner Scheinast
Regular Article - Theoretical Physics

Abstract.

The energy dependence of various particle ratios is calculated within the Ultra-relativistic Quantum Molecular Dynamics approach and compared with the hadron resonance gas (HRG) model and measurements from various experiments, including RHIC-BES, SPS and AGS. It is found that the UrQMD particle ratios agree well with the experimental results at the RHIC-BES energies. Thus, we have utilized UrQMD in simulating particle ratios at other beam energies down to 3GeV, which will be accessed at NICA and FAIR future facilities. We observe that the particle ratios for crossover and first-order phase transition, implemented in the hybrid UrQMD v3.4, are nearly indistinguishable, especially at low energies (at large baryon chemical potentials or high density).

References

  1. 1.
    C.P. Singh, Phys. Rep. 236, 147 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    B. Muller, Rep. Prog. Phys. 58, 611 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    M. Gyulassy, L. McLarren, Nucl. Phys. A 750, 30 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Abdel Nasser Tawfik, Int. J. Mod. Phys. A 29, 1430021 (2014)CrossRefGoogle Scholar
  5. 5.
    P. Braun-Munzinger, J. Stachel, J.P. Wessels, N. Xu, Phys. Lett. B 344, 43 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    P. Braun-Munzinger, J. Stachel, J.P. Wessels, N. Xu, Phys. Lett. B 365, 1 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    P. Braun-Munzinger, I. Heppe, J. Stachel, Phys. Lett. B 465, 15 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    J. Cleymans, H. Satz, Z. Phys. C 57, 135 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    S.K. Tiwari, C.P. Singh, Adv. High Energy Phys. 2013, 805413 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    J. Rafelski, J. Letessier, Phys. Rev. Lett. 85, 4695 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    F. Becattini, J. Cleymans, A. Keranen, E. Suhonen, K. Redlich, Phys. Rev. C 64, 024901 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    J. Cleymans, D. Elliott, A. Keranen, E. Suhonen, Phys. Rev. C 57, 3319 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    R. Averbeck, R. Holzmann, V. Metag, R.S. Simon, Phys. Rev. C 67, 024903 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    STAR Collaboration (J. Adams et al.), Nucl. Phys. A 757, 102 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    STAR Collaboration (M.M. Aggarwal), An Experimental Exploration of the QCD Phase Diagram: The Search for the Critical Point and the Onset of De-confinement, arXiv:1007.2613 [nucl-ex]
  16. 16.
    W. Broniowski, A. Baran, W. Florkowski, Acta Phys. Pol. B 33, 4235 (2002)ADSGoogle Scholar
  17. 17.
    W. Broniowski, W. Florkowski, Phys. Rev. C 65, 064905 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 638, 3 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    Z. Fodor, S.D. Katz, JHEP 04, 050 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    P. deForcrand, O. Philipsen, Nucl. Phys. B 642, 290 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    A. Tawfik, M.Y. El-Bakry, D.M. Habashy, M.T. Mohamed, E. Abbas, Int. J. Mod. Phys. E 25, 1650018 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    H. Petersen et al., Phys. Rev. C 78, 044901 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    K.A. Olive et al., Chin. Phys. C 38, 1 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 772, 167 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Abdel Nasser Tawfik, Ehab Abbas, Phys. Part. Nucl. Lett. 12, 521 (2015)CrossRefGoogle Scholar
  26. 26.
    Abdel Nasser Tawfik, M.Y. El-Bakry, D.M. Habashy, M.T. Mohamed, Ehab Abbas, Int. J. Mod. Phys. E 24, 1550067 (2015)CrossRefGoogle Scholar
  27. 27.
    S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    Steinheimer, S. Schramm, H. Stocker, Phys. Rev. C 84, 045208 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    J. Steinheimer, V. Dexheimer, M. Bleicher, H. Petersen, S. Schramm, H. Stocker, Phys. Rev. C 81, 044913 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Jussi Auvinen, Hannah Petersen, Phys. Rev. C 88, 064908 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    D.H. Rischke, Y. Pursun, J.A. Maruhn, Nucl. Phys. A 596, 717 (1996)CrossRefGoogle Scholar
  32. 32.
    D. Zschiesche, H. Stocker, W. Greiner, Phys. Rev. C 65, 064902 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    P. Huovinen, H. Petersen, Eur. Phys. J. A 48, 171 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 92, 112301 (2004)CrossRefGoogle Scholar
  35. 35.
    NA49 Collaboration (S.V. Afanasiev et al.), Phys. Rev. C 66, 054902 (2002)CrossRefGoogle Scholar
  36. 36.
    NA49 Collaboration (C. Alt et al.), Phys. Rev. C 77, 024903 (2008)CrossRefGoogle Scholar
  37. 37.
    E895 Collaboration (J.L. Kaly et al.), Phys. Rev. C 68, 054905 (2003)CrossRefGoogle Scholar
  38. 38.
    STAR Collaboration (L. Ruan et al.), J. Phys. G 31, S1029 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    NA49 Collaboration (T. Anticic et al.), Phys. Rev. Lett. 93, 022302 (2004)CrossRefGoogle Scholar
  40. 40.
    NA49 Collaboration (C. Alt et al.), Phys. Rev. C 78, 034918 (2008)CrossRefGoogle Scholar
  41. 41.
    E895 Collaboration (C. Pinkenburg et al.), Nucl. Phys. A 698, 495c (2002)ADSCrossRefGoogle Scholar
  42. 42.
    NA49 Collaboration (C. Alt et al.), Phys. Rev. Lett. 94, 192301 (2005)CrossRefGoogle Scholar
  43. 43.
    NA49 Collaboration (S.V. Afanasiev et al.), Phys. Lett. B 358, 275 (2002)Google Scholar
  44. 44.
    NA57 Collaboration (F. Antinori et al.), Phys. Lett. B 595, 68 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    STAR Collaboration (M.M. Aggarwal et al.), Phys. Rev. C 83, 024901 (2011)CrossRefGoogle Scholar
  46. 46.
    STAR Collaboration (L. Kumar), J. Phys. G: Nucl. Part. Phys. 38, 124145 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    STAR Collaboration (S. Das), Nucl. Phys. A. 904, 891c (2013)Google Scholar
  48. 48.
    STAR Collaboration (X. Zhu), Acta Phys. Pol. B. Proc. Suppl. 5, 213 (2012)CrossRefGoogle Scholar
  49. 49.
    STAR Collaboration (B.I. Abelev et al.), Phys. Rev. C 79, 034909 (2009)CrossRefGoogle Scholar
  50. 50.
    J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Rev. C 73, 034905 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    HADES Collaboration (G. Agakishiev et al.), Eur. Phys. J. A 47, 21 (2011)CrossRefGoogle Scholar
  52. 52.
    FOPI Collaboration (X. Lopez et al.), Phys. Rev. C 76, 052203 (2007)Google Scholar
  53. 53.
    P. Alba, W. Alberico, R. Bellwied, M. Bluhm, V.M. Sarti, M. Nahrgang, C. Ratti, Phys. Lett. B 738, 305 (2014)ADSCrossRefGoogle Scholar
  54. 54.
    V.P. Konchakovski, W. Cassing, Yu.B. Ivanov, V.D. Toneev, Phys. Rev. C 90, 014903 (2014)ADSCrossRefGoogle Scholar
  55. 55.
    Yu.B. Ivanov, A.A. Soldatov, Phys. Rev. C 91, 024914 (2015)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Abdel Nasser Tawfik
    • 1
    • 2
  • Loutfy I. Abou-Salem
    • 3
  • Asmaa G. Shalaby
    • 2
    • 3
  • Mahmoud Hanafy
    • 2
    • 3
  • Alexander Sorin
    • 4
    • 5
    • 6
    • 7
  • Oleg Rogachevsky
    • 5
  • Werner Scheinast
    • 5
  1. 1.Egyptian Center for Theoretical Physics (ECTP)Modern University for Technology and Information (MTI)CairoEgypt
  2. 2.World Laboratory for Cosmology and Particle Physics (WLCAPP)CairoEgypt
  3. 3.Physics Department, Faculty of ScienceBenha UniversityBenhaEgypt
  4. 4.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaRussia
  5. 5.Veksler and Baldin Laboratory of High Energy PhysicsJoint Institute for Nuclear ResearchDubnaRussia
  6. 6.National Research Nuclear University (MEPhI)MoscowRussia
  7. 7.Dubna International UniversityDubnaRussia

Personalised recommendations