Advertisement

Relativistic mean-field mass models

  • D. Peña-ArteagaEmail author
  • S. Goriely
  • N. Chamel
Regular Article - Theoretical Physics
Part of the following topical collections:
  1. Finite range effective interactions and associated many-body methods - A tribute to Daniel Gogny

Abstract.

We present a new effort to develop viable mass models within the relativistic mean-field approach with density-dependent meson couplings, separable pairing and microscopic estimations for the translational and rotational correction energies. Two interactions, DD-MEB1 and DD-MEB2, are fitted to essentially all experimental masses, and also to charge radii and infinite nuclear matter properties as determined by microscopic models using realistic interactions. While DD-MEB1 includes the \(\sigma\), \(\omega\) and \(\rho\) meson fields, DD-MEB2 also considers the \(\delta\) meson. Both mass models describe the 2353 experimental masses with a root mean square deviation of about 1.1 MeV and the 882 measured charge radii with a root mean square deviation of 0.029 fm. In addition, we show that the Pb isotopic shifts and moments of inertia are rather well reproduced, and the equation of state in pure neutron matter as well as symmetric nuclear matter are in relatively good agreement with existing realistic calculations. Both models predict a maximum neutron-star mass of more than 2.6 solar masses, and thus are able to accommodate the heaviest neutron stars observed so far. However, the new Lagrangians, like all previously determined RMF models, present the drawback of being characterized by a low effective mass, which leads to strong shell effects due to the strong coupling between the spin-orbit splitting and the effective mass. Complete mass tables have been generated and a comparison with other mass models is presented.

References

  1. 1.
    S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. C 93, 034337 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    S. Goriely, Nucl. Phys. A 933, 68 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. C 88, 061302(R) (2013)ADSCrossRefGoogle Scholar
  4. 4.
    S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. C 88, 024308 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. C 82, 035804 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. Lett. 102, 152503 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    S. Goriely, S. Hilaire, M. Girod, S. Péru, Phys. Rev. Lett. 102, 242501 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    S. Goriely, S. Hilaire, M. Girod, S. Péru, Eur. Phys. J. A 52, 202 (2016) this Topical IssueADSCrossRefGoogle Scholar
  9. 9.
    D. Hirata, K. Sumiyoshi, I. Tanihata, Y. Sugahara, T. Tachibana, H. Toki, Nucl. Phys. A 616, 438c (1997)ADSCrossRefGoogle Scholar
  10. 10.
    G.A. Lalazissis, S. Raman, P. Ring, At. Data Nucl. Data Table 71, 2 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    L. Geng, H. Toki, J. Meng, Prog. Theor. Phys. 113, 785 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    S.E. Agbemava, A.V. Afanasjev, D. Ray, P. Ring, Phys. Rev. C 89, 54320 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    K.Q. Lu, Z.X. Li, Z.P. Li, J.M. Yao, J. Meng, Phys. Rev. C 91, 027304 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    M. Arnould, S. Goriely, K. Takahashi, Phys. Rep. 450, 97 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    X. Roca-Maza, J. Piekarewicz, Phys. Rev. C 78, 025807 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    J.M. Pearson, S. Goriely, N. Chamel, Phys. Rev. C 83, 065810 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    N. Chamel, R.L. Pavlov, L.M. Mihailov et al., Phys. Rev. C 86, 055804 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    S. Kreim, M. Hempel, D. Lunney, J. Schaffner-Bielich, Int. J. Mass Spectran. 349-350, 63 (2013)CrossRefGoogle Scholar
  19. 19.
    D. Basilico, D. Peña Arteaga, X. Roca-Maza, G. Coló, Phys. Rev. C 92, 035802 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    S. Goriely, R. Capote, Phys. Rev. C 89, 054318 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Y.K. Gambhir, P. Ring, A. Thimet, Ann. Phys. (N.Y.) 198, 132 (1990)ADSCrossRefGoogle Scholar
  22. 22.
    T. Nikšić, D. Vretenar, P. Finelli, P. Ring, Phys. Rev. C 66, 024306 (2002)ADSGoogle Scholar
  23. 23.
    C. Fuchs, H. Lenske, H.H. Wolter, Phys. Rev. C 52, 3043 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    S. Typel, H.H. Wolter, Nucl. Phys. A 656, 331 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    F. Hofmann, C.M. Keil, H. Lenske, Phys. Rev. C 64, 034314 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    D. Vretenar, A.V. Afanasjev, G.A. Lalazissis, P. Ring, Phys. Rep. 409, 101 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    Yuan Tian, Zhong-yu Ma, P. Ring, Phys. Rev. C 80, 024313 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    R. Brockmann, H. Toki, Phys. Rev. Lett. 68, 3408 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    T. Duguet, Phys. Rev. C 69, 054317 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Tian, Z.Y. Ma, Chin. Phys. Lett. 23, 3226 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    Y. Tian, Z.Y. Ma, P. Ring, Phys. Lett. B 676, 44 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Tian, Z.Y. Ma, P. Ring, Phys. Rev. C 80, 024313 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    S. Belyaev, Nucl. Phys. 24, 322 (1961)CrossRefGoogle Scholar
  34. 34.
    P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 1980)Google Scholar
  35. 35.
    M. Samyn, S. Goriely, M. Bender, J.M. Pearson, Phys. Rev. C 70, 044309 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    S. Pérez-Martín, L.M. Robledo, Phys. Rev. C 78, 014304 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    G. Audi, M. Wang, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, Chin. Phys. C 36, 1287 (2012)CrossRefGoogle Scholar
  38. 38.
    I. Angeli, K.P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    G. Colò, N.V. Giai, J. Meyer, K. Bennaceur, P. Bonche, Phys. Rev. C 70, 024307 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    G.A. Lalazissis, T. Nikšić, D. Vretenar, P. Ring, Phys. Rev. C 71, 024312 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    X. Roca-Maza, X. Viñas, M. Centelles, P. Ring, P. Schuck, Phys. Rev. C 84, 054309 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    M. Lacombe, B. Loiseau, J.M. Richard, R. Vinh Mau, J. Coté, P. Pirès, R. de Tourreil, Phys. Rev. C 21, 861 (1980)ADSCrossRefGoogle Scholar
  43. 43.
    L.G. Cao, U. Lombardo, P. Schuck, Phys. Rev. C 74, 064301 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    Long Jun Wang, Bao Yuan Sun, Jian Min Dong, Wen Hui Long, Phys. Rev. C 87, 054331 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    M. Bender, P.-H. Heenen, P. Bonche, Phys. Rev. C 70, 054304 (2004)ADSCrossRefGoogle Scholar
  46. 46.
    P. Möller, J.R. Nix, At. Data Nucl. Data Tables 39, 213 (1988)ADSCrossRefGoogle Scholar
  47. 47.
    G.A. Lalazissis, J. König, P. Ring, Phys. Rev. C 55, 540 (1997)ADSCrossRefGoogle Scholar
  48. 48.
    P.W. Zhao, Z.P. Li, J.M. Yao, J. Meng, Phys. Rev. C 82, 054319 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    X.M. Hua, T.H. Heng, Z.M. Niu, B.H. Sun, J.Y Guo, Sci. China Phys. Mech. Astron. 55, 2414 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    M. Jaminan, C. Mahaux, P. Rochus, Phys. Rev. C 22, 2027 (1980)ADSCrossRefGoogle Scholar
  51. 51.
    M. Jaminon, C. Mahaux, Phys. Rev. C 44, 352 (1989)Google Scholar
  52. 52.
    R.J. Furnstahl, J.J. Rusnak, B.D. Serot, Nucl. Phys. A 632, 607 (1998)ADSCrossRefGoogle Scholar
  53. 53.
    M. Bender, K. Rutz, P.-G. Reinhard, J.A. Maruhn, W. Greiner, Phys. Rev. C 58, 2126 (1998)ADSCrossRefGoogle Scholar
  54. 54.
    D. Vretenar, G.A. Lalazissis, R. Behnsch, W. Pschl, P. Ring, Nucl. Phys. A 621, 853 (1997)ADSCrossRefGoogle Scholar
  55. 55.
    Zhong-yu Ma, A. Wandelt, Nguyen Van Giai, D. Vretenar, P. Ring, Li-gang Cao, Nucl. Phys. A 703, 222 (2002)ADSCrossRefGoogle Scholar
  56. 56.
    T.T. Nikšić, D. Vretenar, P. Ring, Phys. Rev. C 66, 064302 (2002)ADSGoogle Scholar
  57. 57.
    M. Rufa, P.-G. Reinhard, J.A. Maruhn, W. Greiner, M.R. Strayer, Phys. Rev. C 38, 390 (1988)ADSCrossRefGoogle Scholar
  58. 58.
    D. Vretenar, T. Nikšić, P. Ring, Phys. Rev. C 65, 024321 (2002)ADSCrossRefGoogle Scholar
  59. 59.
    E. Litvinova, P. Ring, Phys. Rev. C 73, 044328 (2006)ADSCrossRefGoogle Scholar
  60. 60.
    E.N.E. van Dalen, C. Fuchs, A. Faessler, Eur. Phys. J. A 31, 29 (2007)ADSCrossRefGoogle Scholar
  61. 61.
    P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T. Hessels, Nature 467, 1081 (2010)ADSCrossRefGoogle Scholar
  62. 62.
    J. Antoniadis et al., Science 340, 448 (2013)ADSCrossRefGoogle Scholar
  63. 63.
    R.C. Tolman, Phys. Rev. 55, 364 (1939)ADSCrossRefGoogle Scholar
  64. 64.
    J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)ADSCrossRefGoogle Scholar
  65. 65.
    N. Chamel, A.F. Fantina, J.M. Pearson, S. Goriely, Phys. Rev. C 84, 062802 (2011)ADSCrossRefGoogle Scholar
  66. 66.
    C.M. Tarbert, D.P. Watts, D.I. Glazier, P. Aguar, J. Ahrens et al., Phys. Rev. Lett. 112, 242502 (2014)ADSCrossRefGoogle Scholar
  67. 67.
    B. Chen, J. Dobaczewski, K.-L. Kratz, K. Langanke, B. Pfeiffer, F.-K. Thieleman, P. Vogel, Phys. Lett. B 355, 37 (1995)ADSCrossRefGoogle Scholar
  68. 68.
    J.M. Pearson, R.C. Nayak, S. Goriely, Phys. Lett. B 387, 455 (1996)ADSCrossRefGoogle Scholar
  69. 69.
    J.Y. Zeng, T.H. Jin, Z.J. Zhao, Phys. Rev. 50, 1388 (1994)ADSGoogle Scholar
  70. 70.
    P. Möller, A.J. Sierk, T. Ichikawa, H. Sagawa, At. Data Nucl. Data Tables 109, 1 (2016)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institut d’Astronomie et d’AstrophysiqueUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations