Advertisement

Energy and centrality dependence of dNch/d\(\eta\) and dET/d\(\eta\) in heavy-ion collisions from \(\sqrt{s_{NN}} = 7.7\) GeV to 5.02 TeV

  • Aditya Nath Mishra
  • Raghunath SahooEmail author
  • Pragati Sahoo
  • Pooja Pareek
  • Nirbhay K. Behera
  • Basanta K. Nandi
Regular Article - Theoretical Physics

Abstract.

The centrality dependence of pseudorapidity density of charged particles and transverse energy is studied for a wide range of collision energies for heavy-ion collisions at midrapidity from 7.7GeV to 5.02TeV. A two-component model approach has been adopted to quantify the soft and hard components of particle production, coming from nucleon participants and binary nucleon-nucleon collisions, respectively. Within experimental uncertainties, the hard component contributing to the particle production has been found not to show any clear collision energy dependence from RHIC to LHC. The effect of centrality and collision energy in particle production seems to factor out with some degree of dependency on the collision species. The collision of uranium-like deformed nuclei opens up new challenges in understanding the energy-centrality factorization, which is evident from the centrality dependence of transverse energy density, when compared to collision of symmetric nuclei.

References

  1. 1.
    J.C. Collins, M.J. Perry, Phys. Rev. Lett. 34, 1353 (1975)ADSCrossRefGoogle Scholar
  2. 2.
    J.D. Bjorken, Phys. Rev. D 27, 140 (1983)ADSCrossRefGoogle Scholar
  3. 3.
    F. Karsch, Nucl. Phys. A 698, 199c (2002)ADSCrossRefGoogle Scholar
  4. 4.
    BRAHMS Collaboration (I. Arsene et al.), Nucl. Phys. A 757, 1 (2005)CrossRefGoogle Scholar
  5. 5.
    PHOBOS Collaboration (B.B. Back et al.), Nucl. Phys. A 757, 28 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    STAR Collaboration (J. Adams et al.), Nucl. Phys. A 757, 102 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    R. Sahoo, A.N. Mishra, Int. J. Mod. Phys. E 23, 1450024 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    E.K.G. Sarkisyan, A.S. Sakharov, Eur. Phys. J. C 70, 533 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    E.K.G. Sarkisyan, A.N. Mishra, R. Sahoo, A.S. Sakharov, Phys. Rev. D 94, 011501 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    E.K.G. Sarkisyan, A.N. Mishra, R. Sahoo, A.S. Sakharov, Phys. Rev. D 93, 054046 (2016) Phys. Rev. D 93ADSCrossRefGoogle Scholar
  11. 11.
    A.N. Mishra, R. Sahoo, E.K.G. Sarkisyan, A.S. Sakharov, Eur. Phys. J. C 74, 3147 (2014) Eur. Phys. J. C 75ADSCrossRefGoogle Scholar
  12. 12.
    M. Kataja et al., Phys. Rev. D 34, 2755 (1986)ADSCrossRefGoogle Scholar
  13. 13.
    H. Elze, P.A. Carruthers, About entropy and thermalization - a miniworkshop perspective in Proceedings of the NATO Advanced Research Workshop on Hot Hadronic Matter, edited by J. Letessier (Plenum Press, New York, 1995) p. 241, hep-ph/9409248Google Scholar
  14. 14.
    C.Y. Wong, Phys. Rev. C 78, 054902 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    X. Wang, M. Gyulassy, Phys. Rev. Lett. 86, 3496 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    R. Sahoo et al., Adv. High Energy Phys. 2015, 612390 (2015) arXiv:1408.5773 and references thereinCrossRefGoogle Scholar
  17. 17.
    K.J. Eskola, K. Kajantie, J. Lindfors, Nucl. Phys. B 323, 37 (1989)ADSCrossRefGoogle Scholar
  18. 18.
    K.J. Eskola, K. Kajantie, Z. Phys. C 75, 515 (1997)CrossRefGoogle Scholar
  19. 19.
    X. Wang, Phys. Rev. D 43, 104 (1991)ADSCrossRefGoogle Scholar
  20. 20.
    G.C. Nayak, V. Ravishankar, Phys. Rev. D 55, 6877 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    G.C. Nayak, V. Ravishankar, Phys. Rev. C 58, 356 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    R.S. Bhalerao, G. Nayak, Phys. Rev. C 61, 054907 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    X. Wang, M. Gyulassy, Phys. Rev. D 44, 11 (1991)Google Scholar
  24. 24.
    D. Kharzeev, M. Nardi, Phys. Lett. B 507, 121 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    X.N. Wang, Phys. Rep. 280, 287 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    B. Andersson, G. Gustafson, G. Ingelman, T. Sjostrand, Phys. Rep. 97, 31 (1983)ADSCrossRefGoogle Scholar
  27. 27.
    X. Wang, M. Gyulassy, Comput. Phys. Commun. 83, 307 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    M.L. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Annu. Rev. Nucl. Part. Sci. 57, 20543 (2007)CrossRefGoogle Scholar
  29. 29.
    ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044909 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. C 89, 044905 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. C 70, 021902 (2004)CrossRefGoogle Scholar
  32. 32.
  33. 33.
    PHENIX Collaboration (A. Adare et al.), Phys. Rev. C 93, 024901 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    PHENIX Collaboration (A. Iordanova), J. Phys. Conf. Ser. 458, 012004 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. C 71, 034908 (2005) Phys. Rev. C 71CrossRefGoogle Scholar
  36. 36.
    ALICE Collaboration (K. Aamodt et al.), Phys. Rev. Lett. 106, 032301 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    ALICE Collaboration (J. Adam et al.), Phys. Rev. Lett. 116, 222302 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    ALICE Collaboration (J. Adam et al.), Phys. Rev. C 94, 034903 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    ALICE Collaboration (K. Aamodt et al.), Eur. Phys. J. C 68, 89 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    CMS Collaboration (V. Khachatryan et al.), J. High Energy Phys. 02, 041 (2010)Google Scholar
  41. 41.
    UA5 Collaboration (G.J. Alner et al.), Z. Phys. C 33, 1 (1986)CrossRefGoogle Scholar
  42. 42.
    UA5 Collaboration (G.J. Alner et al.), Phys. Rep. 154, 247 (1987)ADSCrossRefGoogle Scholar
  43. 43.
    CDF Collaboration (F. Abe et al.), Phys. Rev. D 41, 2330 (1990)CrossRefGoogle Scholar
  44. 44.
    PHOBOS Collaboration (B. Alver et al.), Phys. Rev. C 83, 024913 (2011)CrossRefGoogle Scholar
  45. 45.
    PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. C 65, 061901 (2002)CrossRefGoogle Scholar
  46. 46.
    Leo Zhou, George S.F. Stephans, Phys. Rev. C 90, 014902 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 91, 072304 (2003)CrossRefGoogle Scholar
  48. 48.
    STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 91, 172302 (2003)CrossRefGoogle Scholar
  49. 49.
    U. Heinz, A. Kuhlman, Phys. Rev. Lett. 94, 132301 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    A. Accardi, Phys. Rev. C 64, 064905 (2001)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Aditya Nath Mishra
    • 1
  • Raghunath Sahoo
    • 1
    Email author
  • Pragati Sahoo
    • 1
  • Pooja Pareek
    • 1
  • Nirbhay K. Behera
    • 1
  • Basanta K. Nandi
    • 2
  1. 1.Discipline of Physics, School of Basic SciencesIndian Institute of Technology IndoreIndoreIndia
  2. 2.Department of PhysicsIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations