Advertisement

Heavy-quark fragmentation functions at next-to-leading perturbative QCD

  • S. M. Moosavi NejadEmail author
  • P. Sartipi Yarahmadi
Regular Article - Theoretical Physics

Abstract.

It is well known that the dominant mechanism to produce hadronic bound states with large transverse momentum is fragmentation. This mechanism is described by the fragmentation functions (FFs) which are the universal and process-independent functions. Here, we review the perturbative FFs formalism as an appropriate tool for studying these hadronization processes and detail the extension of this formalism at next-to-leading order (NLO). Using Suzuki's model, we calculate the perturbative QCD FF for a heavy quark to fragment into a S-wave heavy meson at NLO. As an example, we study the LO and NLO FFs for a charm quark to split into the S-wave D-meson and compare our analytic results both with experimental data and well-known phenomenological models.

References

  1. 1.
    A.P. Martynenko, V.A. Saleev, Phys. Rev. D 53, 6666 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    E. Braaten, T.C. Yuan, Phys. Rev. Lett. 71, 1673 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    M. Kramer, Prog. Part. Nucl. Phys. 47, 141 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972) Yad. Fiz. 15Google Scholar
  5. 5.
    M. Soleymaninia, A.N. Khorramian, S.M. Moosavinejad, F. Arbabifar, Phys. Rev. D 88, 054019 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    M. Soleymaninia, A.N. Khorramian, S.M. Moosavi Nejad, F. Arbabifar, Acta Phys. Pol. Suppl. 7, 573 (2014)CrossRefGoogle Scholar
  7. 7.
    J.P. Ma, Nucl. Phys. B 506, 329 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    C.-H. Chang, Y.-Q. Chen, Phys. Lett. B 284, 127 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    E. Braaten, K.-m. Cheung, T.C. Yuan, Phys. Rev. D 48, 4230 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    M. Suzuki, Phys. Lett. B 71, 139 (1977)ADSCrossRefGoogle Scholar
  11. 11.
    M. Suzuki, Phys. Rev. D 33, 676 (1986)ADSCrossRefGoogle Scholar
  12. 12.
    E. Braaten, K.m. Cheung, S. Fleming, T.C. Yuan, Phys. Rev. D 51, 4819 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    S.M.M. Nejad, A. Armat, Eur. Phys. J. Plus 128, 121 (2013)CrossRefGoogle Scholar
  14. 14.
    S.M. Moosavi Nejad, Eur. Phys. J. A 52, 127 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Belle Collaboration (R. Seuster et al.), Phys. Rev. D 73, 032002 (2006)CrossRefGoogle Scholar
  16. 16.
    CLEO Collaboration (M. Artuso et al.), Phys. Rev. D 70, 112001 (2004)CrossRefGoogle Scholar
  17. 17.
    J.D. Bjorken, Phys. Rev. D 17, 171 (1978)ADSCrossRefGoogle Scholar
  18. 18.
    F. Amiri, C.-R. Ji, Phys. Lett. B 195, 593 (1987)ADSCrossRefGoogle Scholar
  19. 19.
    S.J. Brodsky, C.R. Ji, Phys. Rev. Lett. 55, 2257 (1985)ADSCrossRefGoogle Scholar
  20. 20.
    W. Qi, C.F. Qiao, J.X. Wang, Phys. Rev. D 75, 074012 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    S.M. Moosavi Nejad, Eur. Phys. J. Plus 130, 136 (2015)CrossRefGoogle Scholar
  22. 22.
    G.P. Lepage, S.J. Brodsky, Phys. Rev. D 22, 2157 (1980)ADSCrossRefGoogle Scholar
  23. 23.
    S.J. Brodsky, C.-R. Ji, Phys. Rev. Lett. 55, 2257 (1985)ADSCrossRefGoogle Scholar
  24. 24.
    M.A. Gomshi Nobary, J. Phys. G 20, 65 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley Reading, USA, 1995) p. 842Google Scholar
  26. 26.
    S. Catani, M.L. Mangano, P. Nason, JHEP 07, 024 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    Particle Data Group (K. Nakamura et al.), J. Phys. G 37, 075021 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    S.M. Moosavi Nejad, Eur. Phys. J. C 72, 2224 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    S.M. Moosavi Nejad, M. Balali, Eur. Phys. J. C 76, 173 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    S.M. Moosavi Nejad, Nucl. Phys. B 905, 217 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    S.M. Moosavi Nejad, M. Balali, Phys. Rev. D 90, 114017 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    S.M.M. Nejad, Phys. Rev. D 88, 094011 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    B.A. Kniehl, G. Kramer, S.M. Moosavi Nejad, Nucl. Phys. B 862, 720 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    S.M. Moosavi Nejad, Phys. Rev. D 85, 054010 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    G. Corcella, G. Ferrera, JHEP 12, 029 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    J.C. Collins, Phys. Rev. D 58, 094002 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    B.R. Webber, Nucl. Phys. B 238, 492 (1984)ADSCrossRefGoogle Scholar
  38. 38.
    T. Kneesch, B.A. Kniehl, G. Kramer, I. Schienbein, Nucl. Phys. B 799, 34 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    C. Peterson, D. Schlatter, I. Schmitt, P.M. Zerwas, Phys. Rev. D 27, 105 (1983)ADSCrossRefGoogle Scholar
  40. 40.
    B. Andersson, G. Gustafson, G. Ingelman, T. Sjostrand, Phys. Rep. 97, 31 (1983)ADSCrossRefGoogle Scholar
  41. 41.
    M.G. Bowler, Z. Phys. C 11, 169 (1981)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Faculty of PhysicsYazd UniversityYazdIran
  2. 2.School of Particles and AcceleratorsInstitute for Research in Fundamental Sciences (IPM)TehranIran

Personalised recommendations