Advertisement

Modelling of anisotropic compact stars of embedding class one

  • Piyali Bhar
  • S. K. MauryaEmail author
  • Y. K. Gupta
  • Tuhina Manna
Regular Article - Theoretical Physics

Abstract.

In the present article, we have constructed static anisotropic compact star models of Einstein field equations for the spherical symmetric metric of embedding class one. By assuming the particular form of the metric function \(\nu\), we have solved the Einstein field equations for anisotropic matter distribution. The anisotropic models represent the realistic compact objects such as SAX J 1808.4-3658 (SS1), Her X-1, Vela X-12, PSR J1614-2230 and Cen X-3. We have reported our results in details for the compact star Her X-1 on the ground of physical properties such as pressure, density, velocity of sound, energy conditions, TOV equation and red-shift etc. Along with these, we have also discussed about the stability of the compact star models. Finally we made a comparison between our anisotropic stars with the realistic objects on the key aspects as central density, central pressure, compactness and surface red-shift.

References

  1. 1.
    R. Ruderman, Annu. Rev. Astron. Astrophys. 10, 427 (1972)ADSCrossRefGoogle Scholar
  2. 2.
    R. Kippenhahm, A. Weigert, Stellar Structure and Evolution (Springer, Berlin, 1990)Google Scholar
  3. 3.
    M.K. Mak, T. Harko, Proc. R. Soc. A 459, 393 (2003)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    R. Sharma, S. Mukherjee, S.D. Maharaj, Gen. Relativ. Gravit. 33, 999 (2001)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    J.P. de León, Gen. Relativ. Gravit. 25, 1123 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    L. Herrera, N.O. Santos, Phys. Rep. 286, 53 (1997)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    K. Komathiraj, S.D. Maharaj, Int. J. Mod. Phys. D 16, 1803 (2011)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    P.K. Chattopadhyay, R. Deb, B.C. Paul, Int. J. Mod. Phys. D 21, 1250071 (2012)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    S.S. Misthry, S.D. Maharaj, P.G.L. Leach, Math. Methods Appl. Sci. 31, 363 (2008)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    SK. Monowar Hossein et al., Int. J. Mod. Phys. D 21, 1250088 (2012)CrossRefGoogle Scholar
  11. 11.
    P. Bhar, M.H. Murad, N. Pant, Astrophys. Space Sci. 359, 13 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    P. Bhar, Astrophys. Space Sci. 359, 41 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    P. Bhar, F. Rahaman, Eur. Phys. J. C 75, 41 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    C.G. Böhmer, T. Harko, Class. Quantum Grav. 23, 6479 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    P. Mafa Takisa, S. Ray, S.D. Maharaj, Astrophys. Space Sci. 350, 733 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    P. Mafa Takisa, S.D. Maharaj, S. Ray, Astrophys. Space Sci. 354, 463 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Sifiso A. Ngubelanga, S.D. Maharaj, S. Ray, Astrophys. Space Sci. 357, 40 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    J.M. Sunzu, S.D. Maharaj, S. Ray, Astrophys. Space Sci. 354, 2131 (2014)CrossRefGoogle Scholar
  19. 19.
    M. Malaver, Front. Math. Its Appl. 1, 9 (2014)Google Scholar
  20. 20.
    M. Malaver, Front. Appl. Phys. 1, 20 (2016)Google Scholar
  21. 21.
    N. Pant, S.K. Maurya, Appl. Math. Comput. 218, 8260 (2012)MathSciNetGoogle Scholar
  22. 22.
    S.K. Maurya, Y.K. Gupta, Nonlinear Anal. Real World Appl. 13, 677 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    S.K. Maurya, Y.K. Gupta, S. Ray, S.R. Choudhary, Eur. Phys. J. C 75, 1 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    S.K. Maurya, Y.K. Gupta, S. Ray, arXiv:1502.01915 [gr-qc] (2015)
  25. 25.
    A.S. Eddington, The Mathematical Theory of Relativity (Cambridge University Press, Cambridge, 1924)Google Scholar
  26. 26.
    L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    L. Anchordoqui, S. Pérez Berglia, Phys. Rev. D 62, 067502 (2000)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    J. Rayski, Eight-dimensional unified theory, preprint Dublin Institute for Advance Studies (1976)Google Scholar
  29. 29.
    M. Pavsic, V. Tapia, Resource letter on geometrical results for embeddings and branes, arXiv:gr-qc/0010045 (2001)
  30. 30.
    A. Treibergs, An isometric embedding problem arising from general relativity, talk given at the International Workshop on Geometry, National Tsing Hua University, Hsinchu, Taiwan, 2000, http://www.math.utah.edu/~treiberg/tai6.pdf
  31. 31.
    S.K. Maurya, Y.K. Gupta, T.T. Smitha, Farook Rahaman, Eur. Phys. J. A 52, 191 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    S.K. Maurya, Y.K. Gupta, B. Dayanandan, S. Ray, Eur. Phys. J. C 76, 266 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    S.K. Maurya, Y.K. Gupta, S. Ray, B. Dayanandan, Eur. Phys. J. C 75, 225 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    S.K. Maurya et al., Int. J. Mod. Phys. D 26, 1750002 (2017)Google Scholar
  35. 35.
    K.N. Singh, N. Pant, Astrophys. Space Sci. 361, 177 (2016)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    K.N. Singh et al., Astrophys. Space Sci. 361, 173 (2016)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    K.N. Singh et al., Int. J. Mod. Phys. D 25, 1650099 (2016)CrossRefGoogle Scholar
  38. 38.
    K.R. Karmarkar, Proc. Indian Acad. Sci. A 27, 56 (1948)MathSciNetGoogle Scholar
  39. 39.
    S.N. Pandey, S.P. Sharma, Gen. Relativ. Gravit. 14, 113 (1982)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    R.C. Tolman, Phys. Rev. 55, 364 (1939)ADSCrossRefGoogle Scholar
  41. 41.
    K. Lake, Phys. Rev. D 67, 104015 (2003)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    L. Herrera et al., Phys. Rev. D 77, 027502 (2008)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    M.K. Gokhroo, A.L. Mehra, Gen. Relativ. Gravit. 26, 75 (1994)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    F. Rahaman, S. Ray, A.K. Jafry, K. Chakraborty, Phys. Rev. D 82, 104055 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    H.A. Buchdahl, Phys. Rev. 116, 1027 (1959)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    D.E. Barraco, V.H. Hamity, Phys. Rev. D 65, 124028 (2002)ADSCrossRefGoogle Scholar
  47. 47.
    L. Herrera, Phys. Lett. A 165, 206 (1992)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    H. Abreu, H. Hernández, L.A. Núñez, Class. Quantum Grav. 24, 4631 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    H. Andréasson, Commun. Math. Phys. 288, 715 (2009)ADSCrossRefGoogle Scholar
  50. 50.
    H. Bondi, Proc. R. Soc. Lond. A 281, 39 (1964)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    L. Herrera, G. Ruggeri, L. Witten, Astrophys. J. 234, 1094 (1979)ADSCrossRefGoogle Scholar
  52. 52.
    R. Chan, L. Herrera, N.O. Santos, Mon. Not. R. Astron. Soc. 265, 533 (1993)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Piyali Bhar
    • 1
  • S. K. Maurya
    • 2
    Email author
  • Y. K. Gupta
    • 3
  • Tuhina Manna
    • 4
  1. 1.Department of MathematicsGovernment General Degree CollegeSingur, HooghlyIndia
  2. 2.Department of Mathematical & Physical Sciences, College of Arts & ScienceUniversity of NizwaNizwaOman
  3. 3.Department of MathematicsRaj Kumar Goel Institute of TechnologyGhaziabad, U.P.India
  4. 4.Department of Commerce (Evening)St. Xavier’s CollegeKolkataIndia

Personalised recommendations