Advertisement

Higher-order anisotropies in the Buda-Lund model: Disentangling flow and density field anisotropies

  • Sándor Lökös
  • Máté CsanádEmail author
  • Boris Tomášik
  • Tamás Csörgő
Regular Article - Theoretical Physics

Abstract.

The Buda-Lund hydro model describes an expanding ellipsoidal fireball, and fits the observed elliptic flow and oscillating HBT radii successfully. Due to fluctuations in energy depositions, the fireball shape however fluctuates on an event-by-event basis. The transverse plane asymmetry can be translated into a series of multipole anisotropy coefficients. These anisotropies then result in measurable momentum-space anisotropies, to be measured with respect to their respective symmetry planes. In this paper we detail an extension of the Buda-Lund model to multipole anisotropies and investigate the resulting flow coefficients and oscillations of HBT radii.

References

  1. 1.
    T. Csörgő, B. Lörstad, Phys. Rev. C 54, 1390 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    M. Csanád, T. Csörgő, B. Lörstad, Nucl. Phys. A 742, 80 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    M. Csanád, B. Tomášik, T. Csörgő, Eur. Phys. J. A 37, 111 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    A. Ster et al., Eur. Phys. J. A 47, 58 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    A. Adare et al., Phys. Rev. Lett. 107, 252301 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    K. Aamodt et al., Phys. Lett. B 708, 249 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    L. Adamczyk et al., Phys. Rev. C 88, 014904 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    A. Adare et al., Phys. Rev. Lett. 112, 222301 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    T. Csörgő, B. Lörstad, J. Zimányi, Z. Phys. C 71, 491 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    T. Csörgő, Acta Phys. Hung. Ser. A: Heavy Ion Phys. 15, 1 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    M. Csanád et al., Eur. Phys. J. A 38, 363 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    F. Cooper, G. Frye, Phys. Rev. D 10, 186 (1974)ADSCrossRefGoogle Scholar
  13. 13.
    T. Csörgő, L.P. Csernai, Y. Hama, T. Kodama, Acta Phys. Hung. Ser. A: Heavy Ion Phys. 21, 73 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    M. Csanád, A. Szabó, Phys. Rev. C 90, 054911 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    M. Csanád, T. Csörgő, B. Lörstad, A. Ster, J. Phys. G 30, S1079 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    A.N. Makhlin, Y.M. Sinyukov, Z. Phys. C 39, 69 (1988)ADSCrossRefGoogle Scholar
  17. 17.
    R. Kopečná, B. Tomášik, Eur. Phys. J. A 52, 115 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    F. Retière, M.A. Lisa, Phys. Rev. C 70, 044907 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    A. Adare et al., Phys. Rev. C 92, 034914 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    B. Tomášik, Acta Phys. Pol. B 36, 2087 (2005)Google Scholar
  21. 21.
    W. Broniowski, W. Florkowski, Phys. Rev. Lett. 87, 272302 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    S. Shi, J. Liao, P. Zhuang, Phys. Rev. C 90, 064912 (2014)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sándor Lökös
    • 1
  • Máté Csanád
    • 1
    • 2
    Email author
  • Boris Tomášik
    • 3
    • 4
  • Tamás Csörgő
    • 5
    • 6
  1. 1.Eötvös Loránd UniversityBudapestHungary
  2. 2.Stony Brook UniversityStony BrookUSA
  3. 3.Univerzita Mateja BelaBanská BystricaSlovakia
  4. 4.Czech Technical University in Prague, FNSPEPragueCzech Republic
  5. 5.Wigner RCPBudapest 114Hungary
  6. 6.KRFGyöngyösHungary

Personalised recommendations