Advertisement

Nuclear level density of even-even nuclei with temperature-dependent pairing energy

  • V. Dehghani
  • S. A. AlaviEmail author
Regular Article - Theoretical Physics

Abstract.

The influence of using a temperature-dependent pairing term on the back-shifted Fermi gas (BSFG) model of nuclear level density of some even-even nuclei has been investigated. We have chosen an approach to determine the adjustable parameters from theoretical calculations, directly. The exact Ginzburg-Landau (EGL) theory was used to determine the temperature-dependent pairing energy as back-shifted parameter of the BSFG model. The level density parameter of the BSFG model has been determined through the Thomas-Fermi approximation. The level densities of 96Mo, 106,112Cd, 106,108Pd, 164Dy, 232Th, 238U and heat capacities of 96Mo and 164Dy nuclei were calculated. Good agreement between theory and experiment was observed.

References

  1. 1.
    A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. 1 (World Scientific, 1998)Google Scholar
  2. 2.
    H.T. Nyhus et al., Phys. Rev. C 85, 014323 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    M. Guttormsen et al., Phys. Rev. C 88, 024307 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    A.S. Zubov, G.G. Adamian, N.V. Antonenko, Phys. Part. Nucl. 40, 847 (2009)CrossRefGoogle Scholar
  5. 5.
    T. Von Egidy, H.H. Schmidt, A.N. Behkami, Nucl. Phys. A 481, 189 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    Till von Egidy, Dorel Bucurescu, Phys. Rev. C 72, 044311 (2005)CrossRefGoogle Scholar
  7. 7.
    Till von Egidy, Dorel Bucurescu, Phys. Rev. C 73, 049901 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    A.J. Koning, S. Hilaire, S. Goriely, Nucl. Phys. A 810, 13 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43, 1446 (1965)ADSCrossRefGoogle Scholar
  10. 10.
    S.E. Koonin, D.J. Dean, K. Langanke, Phys. Rep. 278, 1 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Alhassid, G.F. Bertsch, L. Fang, Phys. Rev. C 68, 044322 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    L.G. Moretto, Nucl. Phys. A 185, 145 (1972)ADSCrossRefGoogle Scholar
  13. 13.
    R. Rossignoli, N. Canosa, P. Ring, Phys. Rev. Lett. 80, 1853 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    K. Kaneko, M. Hasegawa, Phys. Rev. C 72, 024307 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    S. Shlomo, Nucl. Phys. A 539, 17 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    A. Bhagwat et al., Phys. Rev. C 81, 044321 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    M.R. Pahlavani, S.A. Alavi, E. Farhadi, Mod. Phys. Lett. A 29, 1450017 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    S.S. Hsiao, J. Markram, H.G. Miller, Y. Tzeng, Phys. Lett. B 315, 12 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    P. Mohammadi, V. Dehghani, A.A. Mehmandoost-Khajeh-Dad, Phys. Rev. C 90, 054304 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon, Oxford, 1966)Google Scholar
  22. 22.
    L.E. Reichl, A Modern Course in Statistical Physics, 3rd edition (Wiley-VCH, 2009)Google Scholar
  23. 23.
    M.K.G. Kruse et al., Eur. Phys. J. A 25, 339 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    K. Kaneko et al., Phys. Rev. C 74, 024325 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Z. Kargar, V. Dehghani, J. Phys. G 40, 045108 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    W. Ye, N. Wang, Phys. Rev. C 87, 014610 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    D. Naderi, M.R. Pahlavani, S.A. Alavi, Phys. Rev. C 87, 054618 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    M.R. Pahlavani S.A. Alavi, Mod. Phys. Lett. A 29, 1450214 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Chankova et al., Phys. Rev. C 73, 034311 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    A.J. Cole, Statistical Models for Nuclear Decay (IOP Publishing Ltd, 2000). Google Scholar
  31. 31.
    J.H.C. Pauli, V.V. Pashkevich, V.M. Strutinsky, Nucl. Phys. A 135, 432 (1969)ADSCrossRefGoogle Scholar
  32. 32.
    S. Cwiok, J. Dudek, W. Nazarewicz, J. Skalski, T. Werner, Comput. Phys. Commun. 46, 379 (1987)ADSCrossRefGoogle Scholar
  33. 33.
    Z. Patyk, A. Sobiczewski, Nucl. Phys. A 533, 132 (1991)ADSCrossRefGoogle Scholar
  34. 34.
    V.I. Zagrebaev, NRV: Low Energy Nuclear Knowledge Base, http://nrv.jinr.ru/nrv
  35. 35.
    P.G. De Gennes, Superconductivity of Metals and Alloys (Westview, Boulder, CO, 1999)Google Scholar
  36. 36.
    T. Ericson, Adv. Phys. 36, 425 (1960)ADSCrossRefGoogle Scholar
  37. 37.
    K. Kaneko, M. Hasegawa, Nucl. Phys. A 740, 95 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    I. Angeli, K.P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    H.T. Nyhus et al., Phys. Rev. C 85, 014323 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    A.C. Larsen et al., Phys. Rev. C 87, 014319 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    H. Utsunomiya et al., Phys. Rev. C 88, 015805 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    T.K. Eriksen et al., Phys. Rev. C 90, 044311 (2014)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Physics Department, Faculty of SciencesUniversity of Sistan and BaluchestanZahedanIran

Personalised recommendations