Advertisement

Differential cross section measurement of the 12C(e,e’pp)10Beg.s. reaction

  • A1 Collaboration
  • M. Makek
  • P. Achenbach
  • C. Ayerbe Gayoso
  • C. Barbieri
  • J. C. Bernauer
  • R. Böhm
  • D. Bosnar
  • A. Denig
  • M. O. Distler
  • I. Friščić
  • C. Giusti
  • H. Merkel
  • U. Müller
  • L. Nungesser
  • J. Pochodzalla
  • S. Sanches Majos
  • B. S. Schlimme
  • M. Schwamb
  • Th. Walcher
Regular Article - Experimental Physics

Abstract.

The differential cross section was measured for the 12C(e,e’pp)10Be g.s. reaction at energy and momentum transfers of 163MeV and 198MeV/c, respectively. The measurement was performed at the Mainz Microtron by using two high-resolution magnetic spectrometers of the A1 Collaboration and a newly developed silicon detector telescope. The overall resolution of the detector system was sufficient to distinguish the ground state from the first excited state in 10 Be. We chose a super-parallel geometry that minimizes the effect of two-body currents and emphasizes the effect of nucleon-nucleon correlations. The obtained differential cross section is compared to the theoretical results of the Pavia reaction code in which different processes leading to two-nucleon knockout are accounted for microscopically. The comparison shows a strong sensitivity to nuclear-structure input and the measured cross section is seen to be dominated by the interplay between long- and short-range nucleon-nucleon correlations. Microscopic calculations based on the ab initio self-consistent Green’s function method give a reasonable description of the experimental cross section.

References

  1. 1.
    V. Pandharipande et al., Rev. Mod. Phys. 69, 981 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    W.H. Dickhoff, C. Barbieri, Prog. Part. Nucl. Phys. 52, 377 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    R. Jastrow, Phys. Rev. 81, 165 (1951)ADSCrossRefGoogle Scholar
  4. 4.
    R. Schiavilla et al., Phys. Rev. Lett. 98, 132501 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    R. Subedi et al., Science 320, 1476 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    S. Boffi, C. Giusti, F.D. Pacati, M. Radici, Electromagnetic Response of Atomic Nuclei (Claredon Press, Oxford, 1996)Google Scholar
  7. 7.
    J.J. Kelly, Adv. Nucl. Phys. 23, 75 (1996)Google Scholar
  8. 8.
    L. Lapikas, Nucl. Phys. A 553, 297c (1993)ADSCrossRefGoogle Scholar
  9. 9.
    C. Barbieri, Phys. Rev. Lett. 103, 202502 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    A. Cipollone et al., Phys. Rev. C 92, 014306 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    I. Bobeldijk et al., Phys. Rev. Lett. 73, 2684 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    P. Monaghan et al., J. Phys. G: Nucl. Part. Phys. 41, 105109 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    K. Hebeler et al., Annu. Rev. Nucl. Part. Sci. 65, 457 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    A. Carbone et al., Phys. Rev. C 90, 054322 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    A. Ekström et al., Phys. Rev. C 91, 051301(R) (2015)ADSCrossRefGoogle Scholar
  16. 16.
    D. Rohe et al., Phys. Rev. Lett. 93, 182501 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    C. Barbieri, L. Lapikás, Phys. Rev. C 70, 054612 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    C. Barbieri, Nucl. Phys. B 159, 174 (2006)CrossRefGoogle Scholar
  19. 19.
    R. Shneor et al., Phys. Rev. Lett. 99, 072501 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    E. Piasetzky et al., Phys. Rev. Lett. 97, 162504 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    I. Korover et al., Phys. Rev. Lett. 113, 022501 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    O. Hen et al., Science 346, 614 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    K. Gottfried, Nucl. Phys. 5, 557 (1958)CrossRefGoogle Scholar
  24. 24.
    D.L. Groep et al., Phys. Rev. C 63, 014005 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    C. Giusti et al., Phys. Rev. C 57, 1691 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    H. Müther, A. Polls, Prog. Part. Nucl. Phys. 45, 243 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    C. Barbieri et al., Phys. Rev. C 70, 014606 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    C.J.G. Onderwater et al., Phys. Rev. Lett. 78, 4893 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    C.J.G. Onderwater et al., Phys. Rev. Lett. 81, 2213 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    R. Starink et al., Phys. Lett. B 474, 33 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    G. Rosner, Prog. Part. Nucl. Phys. 44, 99 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    A. Zondervan et al., Nucl. Phys. A 587, 697 (1995)ADSCrossRefGoogle Scholar
  33. 33.
    L.J.H.M. Kester et al., Phys. Rev. Lett. 74, 1712 (1995)ADSCrossRefGoogle Scholar
  34. 34.
    K.I. Blomqvist et al., Nucl. Phys. A 626, 871 (1997)ADSCrossRefGoogle Scholar
  35. 35.
    M. Makek et al., Nucl. Instrum. Methods Phys. Res. A 673, 82 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    K.I. Blomqvist et al., Nucl. Instrum. Methods Phys. Res. A 403, 263 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    C. Giusti, F.D. Pacati, Nucl. Phys. A 615, 373 (1997)ADSCrossRefGoogle Scholar
  38. 38.
    C. Giusti et al., Eur. Phys. J. A 26, 209 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    C. Giusti, F.D. Pacati, Nucl. Phys. A 641, 297 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    P. Wilhelm et al., Z. Phys. A 359, 467 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    C.C. Gearhart, PhD Thesis, Washington University, St. Louis (1994)Google Scholar
  42. 42.
    C. Barbieri, M. Hjorth-Jensen, Phys. Rev. C 79, 064313 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    C. Barbieri, W.H. Dickhoff, Phys. Rev. C 65, 064313 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    R. Machleidt, Adv. Nucl. Phys. 19, 191 (1989)Google Scholar
  45. 45.
    H. Müther et al., Phys. Rev. C 51, 3040 (1995)ADSCrossRefGoogle Scholar
  46. 46.
    D. Van Neck et al., Phys. Rev. C 57, 2308 (1998)ADSCrossRefGoogle Scholar
  47. 47.
    D. Middleton et al., Eur. Phys. J. A 29, 261 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    D. Middleton et al., Eur. Phys. J. A 43, 137 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    A. Nadasen et al., Phys. Rev. C 23, 1023 (1981)ADSCrossRefGoogle Scholar
  50. 50.
    M. Schwamb et al., Eur. Phys. J. A 17, 7 (2003)ADSCrossRefGoogle Scholar
  51. 51.
    M. Schwamb et al., Eur. Phys. J. A 20, 233 (2004)ADSCrossRefGoogle Scholar
  52. 52.
    C. Giusti, F. Pacati, M. Schwamb, Proceedings of the XVII International School on Nuclear Physics, Neutron Physics and Nuclear Energy, (Varna 2007), BgNS Trans. 5, 56 (2009) arXiv:0801.2304v1 (2008)
  53. 53.
    C. Giusti et al., Eur. Phys. J. A 31, 155 (2007)ADSCrossRefGoogle Scholar
  54. 54.
    C. Giusti et al., Eur. Phys. J. A 33, 29 (2007)ADSCrossRefGoogle Scholar
  55. 55.
    D.R. Tilley et al., Nucl. Phys. A 745, 155 (2004)ADSCrossRefGoogle Scholar
  56. 56.
    N.I. Ashwood et al., Phys. Rev. C 68, 017603 (2003)ADSCrossRefGoogle Scholar
  57. 57.
    M. Distler, in Proceedings of the 12th IEEE Real Time Congress on Nuclear and Plasma Sciences, edited by E. Sanchis (IEEE, 2001)Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • A1 Collaboration
  • M. Makek
    • 1
  • P. Achenbach
    • 2
  • C. Ayerbe Gayoso
    • 2
  • C. Barbieri
    • 3
  • J. C. Bernauer
    • 2
  • R. Böhm
    • 2
  • D. Bosnar
    • 1
  • A. Denig
    • 2
  • M. O. Distler
    • 2
  • I. Friščić
    • 1
  • C. Giusti
    • 4
  • H. Merkel
    • 2
  • U. Müller
    • 2
  • L. Nungesser
    • 2
  • J. Pochodzalla
    • 2
  • S. Sanches Majos
    • 2
  • B. S. Schlimme
    • 2
  • M. Schwamb
    • 2
  • Th. Walcher
    • 2
  1. 1.Department of Physics, Faculty of ScienceUniversity of ZagrebZagrebCroatia
  2. 2.Institut für KernphysikJohannes Gutenberg-UniversitätMainzGermany
  3. 3.Department of PhysicsUniversity of SurreyGuildfordUK
  4. 4.Dipartimento di FisicaUniversità degli Studi di Pavia and INFN, Sezione di PaviaPaviaItaly

Personalised recommendations