Skip to main content
Log in

Differential cross section measurement of the 12C(e,e’pp)10Beg.s. reaction

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The differential cross section was measured for the 12C(e,e’pp)10Be g.s. reaction at energy and momentum transfers of 163MeV and 198MeV/c, respectively. The measurement was performed at the Mainz Microtron by using two high-resolution magnetic spectrometers of the A1 Collaboration and a newly developed silicon detector telescope. The overall resolution of the detector system was sufficient to distinguish the ground state from the first excited state in 10 Be. We chose a super-parallel geometry that minimizes the effect of two-body currents and emphasizes the effect of nucleon-nucleon correlations. The obtained differential cross section is compared to the theoretical results of the Pavia reaction code in which different processes leading to two-nucleon knockout are accounted for microscopically. The comparison shows a strong sensitivity to nuclear-structure input and the measured cross section is seen to be dominated by the interplay between long- and short-range nucleon-nucleon correlations. Microscopic calculations based on the ab initio self-consistent Green’s function method give a reasonable description of the experimental cross section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Pandharipande et al., Rev. Mod. Phys. 69, 981 (1997)

    Article  ADS  Google Scholar 

  2. W.H. Dickhoff, C. Barbieri, Prog. Part. Nucl. Phys. 52, 377 (2004)

    Article  ADS  Google Scholar 

  3. R. Jastrow, Phys. Rev. 81, 165 (1951)

    Article  ADS  Google Scholar 

  4. R. Schiavilla et al., Phys. Rev. Lett. 98, 132501 (2007)

    Article  ADS  Google Scholar 

  5. R. Subedi et al., Science 320, 1476 (2008)

    Article  ADS  Google Scholar 

  6. S. Boffi, C. Giusti, F.D. Pacati, M. Radici, Electromagnetic Response of Atomic Nuclei (Claredon Press, Oxford, 1996)

  7. J.J. Kelly, Adv. Nucl. Phys. 23, 75 (1996)

    Google Scholar 

  8. L. Lapikas, Nucl. Phys. A 553, 297c (1993)

    Article  ADS  Google Scholar 

  9. C. Barbieri, Phys. Rev. Lett. 103, 202502 (2009)

    Article  ADS  Google Scholar 

  10. A. Cipollone et al., Phys. Rev. C 92, 014306 (2015)

    Article  ADS  Google Scholar 

  11. I. Bobeldijk et al., Phys. Rev. Lett. 73, 2684 (1994)

    Article  ADS  Google Scholar 

  12. P. Monaghan et al., J. Phys. G: Nucl. Part. Phys. 41, 105109 (2014)

    Article  ADS  Google Scholar 

  13. K. Hebeler et al., Annu. Rev. Nucl. Part. Sci. 65, 457 (2015)

    Article  ADS  Google Scholar 

  14. A. Carbone et al., Phys. Rev. C 90, 054322 (2014)

    Article  ADS  Google Scholar 

  15. A. Ekström et al., Phys. Rev. C 91, 051301(R) (2015)

    Article  ADS  Google Scholar 

  16. D. Rohe et al., Phys. Rev. Lett. 93, 182501 (2004)

    Article  ADS  Google Scholar 

  17. C. Barbieri, L. Lapikás, Phys. Rev. C 70, 054612 (2014)

    Article  ADS  Google Scholar 

  18. C. Barbieri, Nucl. Phys. B 159, 174 (2006)

    Article  Google Scholar 

  19. R. Shneor et al., Phys. Rev. Lett. 99, 072501 (2007)

    Article  ADS  Google Scholar 

  20. E. Piasetzky et al., Phys. Rev. Lett. 97, 162504 (2006)

    Article  ADS  Google Scholar 

  21. I. Korover et al., Phys. Rev. Lett. 113, 022501 (2014)

    Article  ADS  Google Scholar 

  22. O. Hen et al., Science 346, 614 (2014)

    Article  ADS  Google Scholar 

  23. K. Gottfried, Nucl. Phys. 5, 557 (1958)

    Article  Google Scholar 

  24. D.L. Groep et al., Phys. Rev. C 63, 014005 (2000)

    Article  ADS  Google Scholar 

  25. C. Giusti et al., Phys. Rev. C 57, 1691 (1998)

    Article  ADS  Google Scholar 

  26. H. Müther, A. Polls, Prog. Part. Nucl. Phys. 45, 243 (2000)

    Article  ADS  Google Scholar 

  27. C. Barbieri et al., Phys. Rev. C 70, 014606 (2004)

    Article  ADS  Google Scholar 

  28. C.J.G. Onderwater et al., Phys. Rev. Lett. 78, 4893 (1997)

    Article  ADS  Google Scholar 

  29. C.J.G. Onderwater et al., Phys. Rev. Lett. 81, 2213 (1998)

    Article  ADS  Google Scholar 

  30. R. Starink et al., Phys. Lett. B 474, 33 (2000)

    Article  ADS  Google Scholar 

  31. G. Rosner, Prog. Part. Nucl. Phys. 44, 99 (2000)

    Article  ADS  Google Scholar 

  32. A. Zondervan et al., Nucl. Phys. A 587, 697 (1995)

    Article  ADS  Google Scholar 

  33. L.J.H.M. Kester et al., Phys. Rev. Lett. 74, 1712 (1995)

    Article  ADS  Google Scholar 

  34. K.I. Blomqvist et al., Nucl. Phys. A 626, 871 (1997)

    Article  ADS  Google Scholar 

  35. M. Makek et al., Nucl. Instrum. Methods Phys. Res. A 673, 82 (2012)

    Article  ADS  Google Scholar 

  36. K.I. Blomqvist et al., Nucl. Instrum. Methods Phys. Res. A 403, 263 (1998)

    Article  ADS  Google Scholar 

  37. C. Giusti, F.D. Pacati, Nucl. Phys. A 615, 373 (1997)

    Article  ADS  Google Scholar 

  38. C. Giusti et al., Eur. Phys. J. A 26, 209 (2005)

    Article  ADS  Google Scholar 

  39. C. Giusti, F.D. Pacati, Nucl. Phys. A 641, 297 (1998)

    Article  ADS  Google Scholar 

  40. P. Wilhelm et al., Z. Phys. A 359, 467 (1997)

    Article  ADS  Google Scholar 

  41. C.C. Gearhart, PhD Thesis, Washington University, St. Louis (1994)

  42. C. Barbieri, M. Hjorth-Jensen, Phys. Rev. C 79, 064313 (2009)

    Article  ADS  Google Scholar 

  43. C. Barbieri, W.H. Dickhoff, Phys. Rev. C 65, 064313 (2002)

    Article  ADS  Google Scholar 

  44. R. Machleidt, Adv. Nucl. Phys. 19, 191 (1989)

    Google Scholar 

  45. H. Müther et al., Phys. Rev. C 51, 3040 (1995)

    Article  ADS  Google Scholar 

  46. D. Van Neck et al., Phys. Rev. C 57, 2308 (1998)

    Article  ADS  Google Scholar 

  47. D. Middleton et al., Eur. Phys. J. A 29, 261 (2006)

    Article  ADS  Google Scholar 

  48. D. Middleton et al., Eur. Phys. J. A 43, 137 (2010)

    Article  ADS  Google Scholar 

  49. A. Nadasen et al., Phys. Rev. C 23, 1023 (1981)

    Article  ADS  Google Scholar 

  50. M. Schwamb et al., Eur. Phys. J. A 17, 7 (2003)

    Article  ADS  Google Scholar 

  51. M. Schwamb et al., Eur. Phys. J. A 20, 233 (2004)

    Article  ADS  Google Scholar 

  52. C. Giusti, F. Pacati, M. Schwamb, Proceedings of the XVII International School on Nuclear Physics, Neutron Physics and Nuclear Energy, (Varna 2007), BgNS Trans. 5, 56 (2009) arXiv:0801.2304v1 (2008)

  53. C. Giusti et al., Eur. Phys. J. A 31, 155 (2007)

    Article  ADS  Google Scholar 

  54. C. Giusti et al., Eur. Phys. J. A 33, 29 (2007)

    Article  ADS  Google Scholar 

  55. D.R. Tilley et al., Nucl. Phys. A 745, 155 (2004)

    Article  ADS  Google Scholar 

  56. N.I. Ashwood et al., Phys. Rev. C 68, 017603 (2003)

    Article  ADS  Google Scholar 

  57. M. Distler, in Proceedings of the 12th IEEE Real Time Congress on Nuclear and Plasma Sciences, edited by E. Sanchis (IEEE, 2001)

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to D. Bosnar.

Additional information

Communicated by Z.-E. Meziani

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

A1 Collaboration., Makek, M., Achenbach, P. et al. Differential cross section measurement of the 12C(e,e’pp)10Beg.s. reaction. Eur. Phys. J. A 52, 298 (2016). https://doi.org/10.1140/epja/i2016-16298-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16298-3

Navigation