Advertisement

Relativistic ion collisions as the source of hypernuclei

  • A. S. BotvinaEmail author
  • M. Bleicher
  • J. Pochodzalla
  • J. Steinheimer
Review
Part of the following topical collections:
  1. Exploring strongly interacting matter at high densities - NICA White Paper

Abstract.

We shortly review the theory of hypernuclei production in relativistic ion collisions, that is adequate to future experiments at BM@N, NICA, and FAIR. Within a hybrid approach we use transport, coalescence and statistical models to describe the whole process. We demonstrate that the origin of hypernuclei can be explained by typical baryon interactions, that is similar to the production of conventional nuclei. In particular, heavy hypernuclei are coming mostly from projectile and target residues, whereas light hypernuclei can be produced at all rapidities. The yields of hypernuclei increase considerably above the energy threshold for \( \Lambda\) hyperon production, and there is a tendency to saturation of yields of hypernuclei with increasing the beam energy up to few TeV. There are unique opportunities in relativistic ion collisions which are difficult to realize in traditional hypernuclear experiments: The produced hypernuclei have a broad distribution in masses and isospin. They can even reach beyond the neutron and proton drip-lines and that opens a chance to investigate properties of exotic hypernuclei. One finds also the abundant production of multi-strange nuclei, of bound and unbound hypernuclear states with new decay modes. In addition, we can directly get an information on the hypermatter both at high and low temperatures.

References

  1. 1.
    P.B. Demorest et al., Nature 467, 1081 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    J. Antoniadis et al., Science 340, 1233232 (2013)CrossRefGoogle Scholar
  3. 3.
    A. Gal, Phys. Rev. 152, 975 (1966)ADSCrossRefGoogle Scholar
  4. 4.
    S. Nishizaki, Y. Yamamoto, T. Takatsuka, Prog. Theor. Phys. 105, 607 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    S. Nishizaki, Y. Yamamoto, T. Takatsuka, Prog. Theor. Phys. 108, 703 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    D. Lonardoni, S. Gandolfi, F. Pederiva, Phys. Rev. C 87, 041303(R) (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Yamamoto, T. Furumoto, N. Yasutake, Th.A. Rijken, Phys. Rev. C 88, 022801(R) (2013)ADSCrossRefGoogle Scholar
  8. 8.
    H. Bando, T. Mottle, J. Zofka, Int. J. Mod. Phys. A 5, 4021 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    J. Schaffner, C.B. Dover, A. Gal, C. Greiner, H. Stoecker, Phys. Rev. Lett. 71, 1328 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    W. Greiner, J. Mod. Phys. E 5, 1 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    O. Hashimoto, H. Tamura, Prog. Part. Nucl. Phys. 57, 564 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    J. Schaffner-Bielich, Nucl. Phys. A 804, 309 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    A. Gal, O. Hashimoto, J. Pochodzalla (Editors), Nucl. Phys. A 881, 1 (2012) Special issue on Progress in Strangeness Nuclear PhysicsCrossRefGoogle Scholar
  14. 14.
    K. Morita et al., Phys. Rev. C 91, 024916 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    N. Buyukcizmeci, A.S. Botvina, J. Pochodzalla, M. Bleicher, Phys. Rev. C 88, 014611 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    T. Hell, W. Weise, Phys. Rev. C 90, 045801 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    T.A. Armstrong et al., Phys. Rev. C 47, 1957 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    H. Ohm et al., Phys. Rev. C 55, 3062 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    HypHI Collaboration (T.R. Saito et al.), Nucl. Phys. A 881, 218 (2012)CrossRefGoogle Scholar
  20. 20.
    C. Rappold et al., Nucl. Phys. A 913, 170 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    C. Rappold et al., Phys. Rev. C 88, 041001(R) (2013)ADSCrossRefGoogle Scholar
  22. 22.
    T.R. Saito (for the HypHI Collaboration), talks at the ECT Workshop “Strange Hadronic Matter”, Trento, Italy, 2011, http://www.ectstar.eu/ and NUFRA2011 Conference, Kemer, Turkey, 2011, http://fias.uni-frankfurt.de/historical/nufra2011
  23. 23.
    A.S. Botvina, I.N. Mishustin, J. Pochodzalla, Phys. Rev. C 86, 011601(R) (2012)ADSCrossRefGoogle Scholar
  24. 24.
    H. Takahashi et al., Phys. Rev. Lett. 87, 212502 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    A. Sanchez Lorente, J. Pochodzalla, A. Botvina, Int. J. Mod. Phys. E 19, 2644 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    J. Pochodzalla et al., Phys. Rev. C 35, 1695 (1987)ADSCrossRefGoogle Scholar
  27. 27.
    The STAR Collaboration, Science 328, 58 (2010)CrossRefGoogle Scholar
  28. 28.
    ALICE Collaboration (B. Dönigus et al.), Nucl. Phys. A 904, 547c (2013)ADSGoogle Scholar
  29. 29.
    The PANDA Collaboration, http://www-panda.gsi.de and arXiv:physics/0701090
  30. 30.
    https://indico.gsi.de/event/superfrs3 (access to pdf files via timetable and key “walldorf”)
  31. 31.
    C. Rappold, T.R. Saito, C. Scheidenberger, Simulation Study of the Production of Exotic Hypernuclei at the Super-FRS (at GSI Scientific report 2012), GSI Report 2013-1 (2013) http://repository.gsi.de/record/52079
  32. 32.
    NICA White Paper, http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome, http://nica.jinr.ru/files/BM@N
  33. 33.
    M. Danysz, J. Pniewski, Philos. Mag. 44, 348 (1953)CrossRefGoogle Scholar
  34. 34.
    J.P. Bondorf, A.S. Botvina, A.S. Iljinov, I.N. Mishustin, K. Sneppen, Phys. Rep. 257, 133 (1995)ADSCrossRefGoogle Scholar
  35. 35.
    H. Xi et al., Z. Phys. A 359, 397 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    R.P. Scharenberg et al., Phys. Rev. C 64, 054602 (2001)ADSCrossRefGoogle Scholar
  37. 37.
    R. Ogul et al., Phys. Rev. C 83, 024608 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    A.S. Botvina, J. Pochodzalla, Phys. Rev. C 76, 024909 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    S. Das Gupta, Nucl. Phys. A 822, 41 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    V. Topor Pop, S. Das Gupta, Phys. Rev. C 81, 054911 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    M. Agnello et al., Nucl. Phys. A 881, 269 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    J-PARC E10 Collaboration, Phys. Lett. B 729, 39 (2014)CrossRefGoogle Scholar
  43. 43.
    E. Hiyama, S. Ohnishi, M. Kamimura, Y. Yamamoto, Nucl. Phys. A 908, 29 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    A. Gal, D.J. Millener, Phys. Lett. B 725, 445 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    XI International Conference on Hypernuclear and Strange Particle Physics, Barcelona, Spain, 2012, http://icc.ub.edu/congress/HYP2012/talks.php
  46. 46.
    NUFRA2013: 4-th International Conference on Nuclear Fragmentation, Kemer, Turkey, 2013, http://fias.uni-frankfurt.de/historical/nufra2013
  47. 47.
    Y.-G. Ma (for the STAR/RHIC Collaboration), talk at the NUFRA2013 Conference, Kemer, Turkey, 2013, http://fias.uni-frankfurt.de/historical/nufra2013
  48. 48.
    L. Xue et al., Phys. Rev. C 85, 064912 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    P. Camerini (for the ALICE/LHC Collaboration), talk at the NUFRA2013 Conference, Kemer, Turkey, 2013, http://fias.uni-frankfurt.de/historical/nufra2013
  50. 50.
    A. Andronic, P. Braun-Munzinger, J. Stachel, H. Stöcker, Phys. Lett. B 697, 203 (2011)ADSCrossRefGoogle Scholar
  51. 51.
    J. Steinheimer, K. Gudima, A. Botvina, I. Mishustin, M. Bleicher, H. Stöcker, Phys. Lett. B 714, 85 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    M. Wakai, H. Bando, M. Sano, Phys. Rev. C 38, 748 (1988)ADSCrossRefGoogle Scholar
  53. 53.
    Z. Rudy, W. Cassing et al., Z. Phys. A 351, 217 (1995)ADSCrossRefGoogle Scholar
  54. 54.
    Th. Gaitanos, H. Lenske, U. Mosel, Phys. Lett. B 675, 297 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    A.S. Botvina, K.K. Gudima, J. Steinheimer, M. Bleicher, I.N. Mishustin, Phys. Rev. C 84, 064904 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    J. Pochodzalla, Prog. Part. Nucl. Phys. 39, 443 (1997)ADSCrossRefGoogle Scholar
  57. 57.
    A.S. Botvina, K.K. Gudima, J. Pochodzalla, Phys. Rev. C 88, 054605 (2013)ADSCrossRefGoogle Scholar
  58. 58.
    V.D. Toneev, N.S. Amelin, K.K. Gudima, S.Yu. Sivoklokov, Nucl. Phys. A 519, 463c (1990)ADSCrossRefGoogle Scholar
  59. 59.
    S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 225 (1998)ADSCrossRefGoogle Scholar
  60. 60.
    M. Bleicher et al., J. Phys. G 25, 1859 (1999)ADSCrossRefGoogle Scholar
  61. 61.
    W. Cassing, E.L. Bratkovskaya, Phys. Rev. C 78, 034919 (2008)ADSCrossRefGoogle Scholar
  62. 62.
    E.L. Bratkovskaya et al., Phys. Rev. C 69, 054907 (2004)ADSCrossRefGoogle Scholar
  63. 63.
    C. Hartnack et al., Phys. Rep. 510, 119 (2012)ADSCrossRefGoogle Scholar
  64. 64.
    W. Neubert, A.S. Botvina, Eur. Phys. J. A 7, 101 (2000)ADSCrossRefGoogle Scholar
  65. 65.
    A.S. Botvina et al., Phys. Lett. B 742, 7 (2015)ADSCrossRefGoogle Scholar
  66. 66.
    A.S. Lorente, A.S. Botvina, J. Pochodzalla, Phys. Lett. B 697, 222 (2011)ADSCrossRefGoogle Scholar
  67. 67.
    A.S. Botvina et al., Nucl. Phys. A 881, 228 (2012)ADSCrossRefGoogle Scholar
  68. 68.
    Th. Aumann, Progr. Part. Nucl. Phys. 59, 3 (2007)ADSCrossRefGoogle Scholar
  69. 69.
    H. Geissel et al., Nucl. Instrum. Methods Phys. Res. B 204, 71 (2003)ADSCrossRefGoogle Scholar
  70. 70.
    H. Imal et al., Phys. Rev. C 91, 034605 (2015)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • A. S. Botvina
    • 1
    • 2
    Email author
  • M. Bleicher
    • 1
  • J. Pochodzalla
    • 3
    • 4
  • J. Steinheimer
    • 1
  1. 1.Frankfurt Institute for Advanced StudiesJ.W. Goethe UniversityFrankfurt am MainGermany
  2. 2.Institute for Nuclear ResearchRussian Academy of SciencesMoscowRussia
  3. 3.Helmholtz-Institut MainzJ. Gutenberg-UniversitätMainzGermany
  4. 4.Institut für Kernphysik and PRISMA Cluster of ExcellenceJ. Gutenberg-Universität MainzMainzGermany

Personalised recommendations