Missing baryonic resonances in the Hagedorn spectrum

  • Pok Man LoEmail author
  • Michał Marczenko
  • Krzysztof Redlich
  • Chihiro Sasaki
Open Access
Regular Article - Theoretical Physics
Part of the following topical collections:
  1. Exploring strongly interacting matter at high densities - NICA White Paper


The hadronic medium of QCD is modeled as a gas of point-like hadrons, with its composition determined by the Hagedorn mass spectrum. The spectrum consists of a discrete and a continuous part. The former is determined by the experimentally confirmed resonances tabulated by the Particle Data Group (PDG), while the latter can be extracted from the existing lattice data. This formulation of the hadron resonance gas (HRG) provides a transparent framework to relate the fluctuation of conserved charges as calculated in the lattice QCD approach to the particle content of the medium. A comparison of the two approaches shows that the equation of state is well described by the standard HRG model, which includes only a discrete spectrum of known hadrons. The corresponding description in the strange sector, however, shows clear discrepancies, thus a continuous spectrum is added to incorporate the effect of missing resonances. We propose a method to extract the strange-baryon spectrum from the lattice data. The result is consistent with the trend set by the unconfirmed strange baryons resonances listed by the PDG, suggesting that most of the missing interaction strength for the strange baryons reside in the | S| = 1 sector. This scenario is also supported by recent lattice calculations, and might be important in the energy region covered by the NICA accelerator in Dubna, where in the heavy-ion collisions, baryons are the dominating degrees of freedom in the final state.


  1. 1.
    P. Braun-Munzinger, K. Redlich, J. Stachel, in Quark-Gluon Plasma 3, edited by R.C. Hwa (World Scientific, Singapore, 2004) pp. 491--599Google Scholar
  2. 2.
    F. Karsch, K. Redlich, A. Tawfik, Eur. Phys. J. C 29, 549 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    F. Karsch, K. Redlich, A. Tawfik, Phys. Lett. B 571, 67 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    F. Karsch, Acta Phys. Pol. Suppl. 7, 117 (2014)CrossRefGoogle Scholar
  5. 5.
    A. Andronic, P. Braun-Munzinger, J. Stachel, M. Winn, Phys. Lett. B 718, 80 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    M. Albright, J. Kapusta, C. Young, Phys. Rev. C 90, 024915 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    M. Albright, J. Kapusta, C. Young, Phys. Rev. C 92, 044904 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    V. Vovchenko, D.V. Anchishkin, M.I. Gorenstein, Phys. Rev. C 91, 024905 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    S. Borsanyi, Z. Fodor, S.D. Katz, S. Krieg, C. Ratti, K. Szabo, JHEP 01, 138 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    HotQCD Collaboration (A. Bazavov et al.), Phys. Rev. D 86, 034509 (2012)CrossRefGoogle Scholar
  11. 11.
    A. Bazavov, H.-T. Ding, P. Hegde, O. Kaczmarek, F. Karsch, E. Laermann, Y. Maezawa, S. Mukherjee et al., Phys. Rev. Lett. 113, 072001 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    S. Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, K.K. Szabo, Phys. Lett. B 730, 99 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    A. Majumder, B. Muller, Phys. Rev. Lett. 105, 252002 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    R. Hagedorn, Nuovo Cimento Suppl. 3, 147 (1965)Google Scholar
  15. 15.
    R. Hagedorn, CERN yellow report 71-12 (1971)Google Scholar
  16. 16.
    J. Letessier, J. Rafelski, Hadrons and Quark Gluon Plasma, Cambridge Monogr. Part. Phys. Nucl. Phys. Cosmol., Vol. 18 (Cambridge University Press, Cambridge, 2005)Google Scholar
  17. 17.
    S.C. Frautschi, Phys. Rev. D 3, 2821 (1971)ADSCrossRefGoogle Scholar
  18. 18.
    K. Huang, S. Weinberg, Phys. Rev. Lett. 25, 895 (1970)ADSCrossRefGoogle Scholar
  19. 19.
    J.R. Cudell, K.R. Dienes, Phys. Rev. Lett. 69, 1324 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    K. Johnson, C.B. Thorn, Phys. Rev. D 13, 1934 (1976)ADSCrossRefGoogle Scholar
  21. 21.
    P. Braun-Munzinger, J. Cleymans, H. Oeschler, K. Redlich, Nucl. Phys. A 697, 902 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    J. Randrup, J. Cleymans, Phys. Rev. C 74, 047901 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    Particle Data Group Collaboration (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014)CrossRefGoogle Scholar
  24. 24.
    S. Ejiri, C.R. Allton, M. Doring, S.J. Hands, O. Kaczmarek, F. Karsch, E. Laermann, K. Redlich, Nucl. Phys. A 774, 837 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    S. Ejiri, F. Karsch, K. Redlich, Phys. Lett. B 633, 275 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    HotQCD Collaboration (A. Bazavov et al.), Phys. Rev. D 90, 094503 (2014)ADSGoogle Scholar
  27. 27.
    P.M. Lo, M. Marczenko, K. Redlich, C. Sasaki, Phys. Rev. C 92, 055206 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    A. Bazavov et al., Phys. Rev. Lett. 111, 082301 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    S. Mukherjee, private communicationGoogle Scholar
  30. 30.
    R. Dashen, S.K. Ma, H.J. Bernstein, Phys. Rev. 187, 345 (1969)ADSCrossRefGoogle Scholar
  31. 31.
    R. Venugopalan, M. Prakash, Nucl. Phys. A 546, 718 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    B. Friman, P.M. Lo, M. Marczenko, K. Redlich, C. Sasaki, Phys. Rev. D 92, 074003 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    W. Broniowski, F. Giacosa, V. Begun, Phys. Rev. C 92, 034905 (2015)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Pok Man Lo
    • 1
    • 2
    Email author
  • Michał Marczenko
    • 1
  • Krzysztof Redlich
    • 1
    • 2
    • 3
  • Chihiro Sasaki
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of WrocławWrocławPoland
  2. 2.Extreme Matter Institute EMMIGSIDarmstadtGermany
  3. 3.Department of PhysicsDuke UniversityDurhamUSA

Personalised recommendations