Advertisement

Strangeness production in AA and pp collisions

  • Paolo CastorinaEmail author
  • Helmut Satz
Regular Article - Theoretical Physics

Abstract.

Boost-invariant hadron production in high-energy collisions occurs in causally disconnected regions of finite space-time size. As a result, globally conserved quantum numbers (charge, strangeness, baryon number) are conserved locally in spatially restricted correlation clusters. Their size is determined by two time scales: the equilibration time specifying the formation of a quark-gluon plasma, and the hadronization time, specifying the onset of confinement. The expected values for these scales provide the theoretical basis for the suppression observed for strangeness production in elementary interactions (pp , \( e^+e^-\) below LHC energies. In contrast, the space-time superposition of individual collisions in high-energy heavy-ion interactions leads to higher energy densities, resulting in much later hadronization and hence much larger hadronization volumes. This largely removes the causality constraints and results in an ideal hadronic resonance gas in full chemical equilibrium. In the present paper, we determine the collision energies needed for that; we also estimate when pp collisions reach comparable hadronization volumes and thus determine when strangeness suppression should disappear there as well.

References

  1. 1.
    B. Mueller, J. Rafelski, Phys. Rev. Lett. 48, 1066 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    T. Matsui, H. Satz, Phys. Lett. B 187, 416 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    J.D. Bjorken, Fermilab-Pub-82/59-THY (1982) and ErratumGoogle Scholar
  4. 4.
    M. Gyulassy, X.-N. Wang, Nucl. Phys. B 420, 583 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    J.S. Hamieh, K. Redlich, A. Tounsi, Phys. Lett. B 486, 61 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    F. Becattini, G. Passaleva, Eur. Phys. J. C 23, 551 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    P. Castorina, H. Satz, Int. J. Mod. Phys. E 23, 1450019 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    HotQCD Collaboration (A. Bazavov et al.), Phys. Rev. D 90, 094503 (2014)ADSGoogle Scholar
  9. 9.
    F. Karsch, private communicationGoogle Scholar
  10. 10.
    J.D. Bjorken, Phys. Rev. D 27, 140 (1983)ADSCrossRefGoogle Scholar
  11. 11.
    ALICE Collaboration (K. Aamodt et al.), Phys. Rev. Lett. 105, 252301 (2010) arXiv:1011.3916 [nucl-ex]ADSCrossRefGoogle Scholar
  12. 12.
    I. Kraus et al., J. Phys. G 37, 09421 (2010)CrossRefGoogle Scholar
  13. 13.
    J. Letessier, J. Rafelski, A. Tounsi, Phys. Rev. C 64, 406 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    J. Manninen, F. Becattini, M. Gazdzicki, Phys. Rev. C 73, 044905 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    ALICE Collaboration (L. Bianchi), report at Quark Matter 2015, Kobe, Japan, to be published in Nucl. Phys. AGoogle Scholar
  16. 16.
    M. Floris, J. Phys. Conf. Ser. 668, 012013 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    P. Castorina, S. Plumari, H. Satz, Universal Strangeness Production in Hadronic and Nuclear Collisions, arXiv:1603.06529, to be published in Int. J. Mod. Phys. E

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Dipartimento di Fisica ed AstronomiaUniversità di Catania, and INFN, Sezione di CataniaCataniaItaly
  2. 2.Fakultät für PhysikUniversität BielefeldBielefeldGermany

Personalised recommendations