Advertisement

Neutrino mixing in accelerated proton decays

  • Dharam Vir Ahluwalia
  • Lance Labun
  • Giorgio TorrieriEmail author
Regular Article - Theoretical Physics

Abstract.

We discuss the inverse \(\beta\)-decay of accelerated protons in the context of neutrino flavor superpositions (mixings) in mass eigenstates. The process \( p\rightarrow n \ell^{+} \nu_{\ell}\) is kinematically allowed because the accelerating field provides the rest energy difference between initial and final states. The rate of \( p\rightarrow n\) conversions can be evaluated in either the laboratory frame (where the proton is accelerating) or the co-moving frame (where the proton is at rest and interacts with an effective thermal bath of \( \ell\) and \(\nu_{\ell}\) due to the Unruh effect). By explicit calculation, we show that the rates in the two frames disagree when taking into account neutrino mixings, because the weak interaction couples to charge eigenstates whereas gravity couples to neutrino mass eigenstates (D.V. Ahluwalia et al., arXiv:1505.04082 [hep-ph]). The contradiction could be resolved experimentally, potentially yielding new information on the origins of neutrino masses.

References

  1. 1.
    M.C. Gonzalez-Garcia, M. Maltoni, Phys. Rep. 460, 1 (2008) (arXiv:0704.1800 [hep-ph])ADSCrossRefGoogle Scholar
  2. 2.
    B. Pontecorvo, Sov. Phys. JETP 26, 984 (1968) (Zh. Eksp. Teor. Fiz., 53ADSGoogle Scholar
  3. 3.
    D.V. Ahluwalia, Mod. Phys. Lett. A 13, 2249 (1998) [hep-ph/9807267]ADSCrossRefGoogle Scholar
  4. 4.
    D.V. Ahluwalia, C. Burgard, Gen. Rel. Grav. 28, 1161 (1996) [gr-qc/9603008]ADSCrossRefGoogle Scholar
  5. 5.
    D.V. Ahluwalia, Gen. Rel. Grav. 29, 1491 (1997) [gr-qc/9705050]ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    C. Chryssomalakos, D. Sudarsky, Gen. Rel. Grav. 35, 605 (2003) [gr-qc/0206030]ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    S. Weinberg, The Quantum Theory of Fields, Vols. I, II (Cambridge University Press, 1995)Google Scholar
  8. 8.
    D.A.T. Vanzella, G.E.A. Matsas, Phys. Rev. D 63, 014010 (2001) [hep-ph/0002010]ADSCrossRefGoogle Scholar
  9. 9.
    L.C.B. Crispino, A. Higuchi, G.E.A. Matsas, Rev. Mod. Phys. 80, 787 (2008) (arXiv:0710.5373 [gr-qc])ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    J.J. Bisognano, E.H. Wichmann, J. Math. Phys. 17, 303 (1976)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    G.L. Sewell, Ann. Phys. 141, 201 (1982)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    D.V. Ahluwalia, L. Labun, G. Torrieri, arXiv:1505.04082 [hep-ph]
  13. 13.
    D.A.T. Vanzella, G.E.A. Matsas, Phys. Rev. Lett. 87, 151301 (2001) [gr-qc/0104030]ADSCrossRefGoogle Scholar
  14. 14.
    H. Suzuki, K. Yamada, Phys. Rev. D 67, 065002 (2003) [gr-qc/0211056]ADSCrossRefGoogle Scholar
  15. 15.
    S.A. Fulling, Phys. Rev. D 7, 2850 (1973)ADSCrossRefGoogle Scholar
  16. 16.
    P.C.W. Davies, J. Phys. A 8, 60 (1975)CrossRefGoogle Scholar
  17. 17.
    W.G. Unruh, Phys. Rev. D 14, 870 (1976)ADSCrossRefGoogle Scholar
  18. 18.
    E.K. Akhmedov, J. Kopp, JHEP 04, 008 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    E.K. Akhmedov, J. Kopp, JHEP 10, 052 (2013) (arXiv:1001.4815 [hep-ph])ADSCrossRefGoogle Scholar
  20. 20.
    M. Blasone, F. Dell'Anno, S. De Siena, F. Illuminati, EPL 106, 30002 (2014) (arXiv:1401.7793 [quant-ph])ADSCrossRefGoogle Scholar
  21. 21.
    N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, 1984)Google Scholar
  22. 22.
    A.A. Sokolov, I.M. Ternov, Dokl. Akad. Nauk. SSSR 153, 1052 (1963) (Sov. Phys. Dokl. 7Google Scholar
  23. 23.
    J.R. Johnson, R. Prepost, D.E. Wiser, J.J. Murray, R. Schwitters, C.K. Sinclair, Nucl. Instrum. Methods 204, 261 (1983)CrossRefGoogle Scholar
  24. 24.
    J.S. Bell, J.M. Leinaas, Nucl. Phys. B 212, 131 (1983)ADSCrossRefGoogle Scholar
  25. 25.
    A. Higuchi, G.E.A. Matsas, D. Sudarsky, Phys. Rev. D 45, 3308 (1992)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    A. Higuchi, G.E.A. Matsas, D. Sudarsky, Phys. Rev. D 46, 3450 (1992)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    P. Chen, T. Tajima, Phys. Rev. Lett. 83, 256 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    R. Schutzhold, G. Schaller, D. Habs, Phys. Rev. Lett. 100, 091301 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    P. Igor, S. Daniel, arXiv:1306.6621 [quant-ph]
  30. 30.
    Y. Hadad, L. Labun, J. Rafelski, N. Elkina, C. Klier, H. Ruhl, Phys. Rev. D 82, 096012 (2010) (arXiv:1005.3980 [hep-ph])ADSCrossRefGoogle Scholar
  31. 31.
    A. Di Piazza, C. Muller, K.Z. Hatsagortsyan, C.H. Keitel, Rev. Mod. Phys. 84, 1177 (2012) (arXiv:1111.3886 [hep-ph])ADSCrossRefGoogle Scholar
  32. 32.
    Camila de Almeida, Alberto Saa, Am. J. Phys. 74, 154 (2006) (arXiv:physics/0506049)ADSCrossRefGoogle Scholar
  33. 33.
    G. Torrieri, arXiv:1501.00435 [gr-qc]
  34. 34.
    D.G. Boulware, Ann. Phys. 124, 169 (1980)ADSCrossRefGoogle Scholar
  35. 35.
    W.Y. Pauchy Hwang, S.P. Kim, Phys. Rev. D 80, 065004 (2009) (arXiv:0906.3813 [hep-th])ADSCrossRefGoogle Scholar
  36. 36.
    L. Labun, J. Rafelski, Phys. Rev. D 86, 041701 (2012) (arXiv:1203.6148 [hep-ph])ADSCrossRefGoogle Scholar
  37. 37.
    W. Greiner, B. Muller, J. Rafelski, Quantum Electrodynamics of Strong Fields (Springer, Berlin, 1985) p. 594Google Scholar
  38. 38.
    M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley, Reading, MA, 1995) p. 842, sect. 1.8Google Scholar
  39. 39.
    J.S. Schwinger, Phys. Rev. 82, 664 (1951)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    G.V. Dunne, Eur. Phys. J. D 55, 327 (2009) (arXiv:0812.3163 [hep-th])ADSCrossRefGoogle Scholar
  41. 41.
    M. Soffel, B. Muller, W. Greiner, Phys. Rev. D 22, 1935 (1980)ADSCrossRefGoogle Scholar
  42. 42.
    R. Haag, N.M. Hugenholtz, M. Winnink, Commun. Math. Phys. 5, 215 (1967)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    G. Torrieri, H. Truran, in preparationGoogle Scholar
  44. 44.
    H. Leutwyler, A.V. Smilga, Phys. Rev. D 46, 5607 (1992)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    K. Hepp, Helv. Phys. Acta 45, 237 (1972)Google Scholar
  46. 46.
    J. Doukas, S.Y. Lin, B.L. Hu, R.B. Mann, JHEP 11, 119 (2013) (arXiv:1307.4360)ADSCrossRefGoogle Scholar
  47. 47.
    M. Martinez, W. Bang, G. Dyer, X. Wang, E. Gaul, T. Borger, M. Ringuette, M. Spinks et al., AIP Conf. Proc. 1507, 874 (2012)ADSGoogle Scholar
  48. 48.
    The Extreme Light Infrastructure (ELI) project: http://www.extreme-light-infrastructure.eu/eli-home.php
  49. 49.
    R. Schutzhold, H. Gies, G. Dunne, Phys. Rev. Lett. 101, 130404 (2008) (arXiv:0807.0754 [hep-th])ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    E. Akkermans, G.V. Dunne, Phys. Rev. Lett. 108, 030401 (2012) (arXiv:1109.3489 [hep-th])ADSCrossRefGoogle Scholar
  51. 51.
    M.J.A. Jansen, C. Müller, Phys. Rev. A 88, 052125 (2013) (arXiv:1309.1069 [hep-ph])ADSCrossRefGoogle Scholar
  52. 52.
    A. Otto, D. Seipt, D. Blaschke, S.A. Smolyansky, B. Kämpfer, Phys. Rev. D 91, 105018 (2015) (arXiv:1503.08675 [hep-ph])ADSCrossRefGoogle Scholar
  53. 53.
    N. Arkani-Hamed, H.C. Cheng, M.A. Luty, S. Mukohyama, JHEP 05, 074 (2004) (arXiv:hep-th/0312099)MathSciNetCrossRefGoogle Scholar
  54. 54.
    C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan, L. Senatore, JHEP 03, 014 (2008) (arXiv:0709.0293 [hep-th])ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    S. Weinberg, Phys. Rev. D 77, 123541 (2008) (arXiv:0804.4291 [hep-th])ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    C. Lin, L.Z. Labun, arXiv:1501.07160 [hep-th]
  57. 57.
    S.V. Bolokhov, K.A. Bronnikov, S.G. Rubin, Phys. Rev. D 84, 044015 (2011) (arXiv:1011.2828 [hep-ph])ADSCrossRefGoogle Scholar
  58. 58.
    A.J. Niemi, S. Slizovskiy, arXiv:1004.0212 [hep-th]
  59. 59.
    RBC and UKQCD Collaborations (N.H. Christ et al.), Phys. Rev. D 88, 014508 (2013) (arXiv:1212.5931 [hep-lat])Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Dharam Vir Ahluwalia
    • 1
  • Lance Labun
    • 2
  • Giorgio Torrieri
    • 3
    Email author
  1. 1.Manipal Centre for Natural Sciences, High Energy Physics GroupManipal UniversityManipalIndia
  2. 2.Department of PhysicsUniversity of TexasAustinUSA
  3. 3.IFGWUniversidade Estadual de CampinasSão PauloBrazil

Personalised recommendations