Statistical hadronization model analysis of hadron yields in p + Nb and Ar + KCl at SIS18 energies

  • HADES Collaboration
  • G. Agakishiev
  • O. Arnold
  • A. Balanda
  • D. Belver
  • A. Belyaev
  • J. C. Berger-Chen
  • A. Blanco
  • M. Böhmer
  • J. L. Boyard
  • P. Cabanelas
  • E. Castro
  • S. Chernenko
  • M. Destefanis
  • F. Dohrmann
  • A. Dybczak
  • E. Epple
  • L. Fabbietti
  • O. Fateev
  • P. Finocchiaro
  • P. Fonte
  • J. Friese
  • I. Fröhlich
  • T. Galatyuk
  • J. A. Garzón
  • R. Gernhäuser
  • C. Gilardi
  • K. Göbel
  • M. Golubeva
  • D. González-Díaz
  • F. Guber
  • M. Gumberidze
  • T. Heinz
  • T. Hennino
  • R. Holzmann
  • A. Ierusalimov
  • I. Iori
  • A. Ivashkin
  • M. Jurkovic
  • B. Kämpfer
  • T. Karavicheva
  • I. Koenig
  • W. Koenig
  • B. W. Kolb
  • G. Kornakov
  • R. Kotte
  • A. Krása
  • F. Krizek
  • R. Krücken
  • H. Kuc
  • W. Kühn
  • A. Kugler
  • A. Kurepin
  • V. Ladygin
  • R. Lalik
  • J. S. Lange
  • S. Lang
  • K. Lapidus
  • A. Lebedev
  • T. Liu
  • L. Lopes
  • M. Lorenz
  • L. Maier
  • A. Mangiarotti
  • J. Markert
  • V. Metag
  • B. Michalska
  • D. Mihaylov
  • J. Michel
  • E. Morinière
  • J. Mousa
  • C. Müntz
  • R. Münzer
  • L. Naumann
  • Y. C. Pachmayer
  • M. Palka
  • Y. Parpottas
  • V. Pechenov
  • O. Pechenova
  • J. Pietraszko
  • W. Przygoda
  • B. Ramstein
  • L. Rehnisch
  • A. Reshetin
  • A. Rustamov
  • A. Sadovsky
  • P. Salabura
  • T. Scheib
  • A. Schmah
  • H. Schuldes
  • E. Schwab
  • J. Siebenson
  • Yu. G. Sobolev
  • S. Spataro
  • B. Spruck
  • H. Ströbele
  • J. Stroth
  • C. Sturm
  • A. Tarantola
  • K. Teilab
  • P. Tlusty
  • M. Traxler
  • R. Trebacz
  • H. Tsertos
  • T. Vasiliev
  • V. Wagner
  • M. Weber
  • C. Wendisch
  • J. Wirth
  • M. Wisniowski
  • J. Wüstenfeld
  • S. Yurevich
  • Y. Zanevsky
Regular Article - Experimental Physics

Abstract.

The HADES data from p + Nb collisions at a center-of-mass energy of \( \sqrt{s_{NN}} = 3.2\) GeV are analyzed employing a statistical hadronization model. The model can successfully describe the production yields of the identified hadrons \( \pi^{0}\), \( \eta\), \( \Lambda\), K0s, \( \omega\) with parameters \( T_{chem} = (99\pm 11)\) MeV and \( \mu_{b} = (619\pm 34)\) MeV, which fit well into the chemical freeze-out systematics found in heavy-ion collisions. In addition, we reanalyze our previous HADES data from Ar + KCl collisions at \( \sqrt{s_{NN}} = 2.6\) GeV with an updated version of the model. We address equilibration in heavy-ion collisions by testing two aspects: the description of yields and the regularity of freeze-out parameters from a statistical model fit as a function of colliding energy and system size. Despite its success, the model fails to describe the observed \( \Xi^{-}\) yields in both, p + Nb and Ar + KCl . Special emphasis is put on feed-down contributions from higher-lying resonance states as a possible explanation for the observed excess.

References

  1. 1.
    H. Koppe, Z. Naturforsch. A 3, 251 (1948)ADSGoogle Scholar
  2. 2.
    P. Braun-Munzinger, K. Redlich, J. Stachel, arXiv:nucl-th/0304013 (2003)
  3. 3.
    M. Petran, J. Letessier, V. Petracek, J. Rafelski, Phys. Rev. C 88, 034907 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    F. Becattini, M. Gazdzicki, A. Keranen, J. Manninen, R. Stock, Phys. Rev. C 69, 024905 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    J. Cleymans, H. Oeschler, K. Redlich, Phys. Rev. C 59, 1663 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    A.N. Tawfik, Int. J. Mod. Phys. A 29, 1430021 (2014)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    M. Floris, Nucl. Phys. A 931, 103 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Rev. C 73, 034905 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    J. Stachel, A. Andronic, P. Braun-Munzinger, K. Redlich, J. Phys. Conf. Ser. 509, 012019 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    ALICE Collaboration (J. Adam et al.), Phys. Rev. C 93, 024917 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    R. Stock, Phys. Lett. B 456, 277 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    R. Hagedorn, Nuovo Cimento Suppl. 3, 147 (1965)Google Scholar
  13. 13.
    E.V. Shuryak, Yad. Fiz. 16, 395 (1972)Google Scholar
  14. 14.
    F. Becattini, G. Passaleva, Eur. Phys. J. C 23, 551 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    F. Becattini, P. Castorina, J. Manninen, H. Satz, Eur. Phys. J. C 56, 493 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    A. Andronic, F. Beutler, P. Braun-Munzinger, K. Redlich, J. Stachel, Phys. Lett. B 675, 312 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 772, 167 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    I. Kraus, J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Rev. C 76, 064903 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    J. Cleymans, B. Kämpfer, P. Steinberg, S. Wheaton, J. Phys. G 30, S595 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    B. Kämpfer, J. Cleymans, P. Steinberg, S. Wheaton, Heavy Ion Phys. 21, 207 (2004)CrossRefGoogle Scholar
  21. 21.
    J. Cleymans, B. Kampfer, M. Kaneta, S. Wheaton, N. Xu, Phys. Rev. C 71, 054901 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    HADES Collaboration (G. Agakishiev et al.), Eur. Phys. J. A 47, 21 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    J. Steinheimer, M. Bleicher, J. Phys. G 43, 1, 015104 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    S. Wheaton, J. Cleymans, Comput. Phys. Commun. 180, 84 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Particle Data Group (K. Hagiwara et al.), Phys. Rev. D 66, 010001 (2002)CrossRefGoogle Scholar
  26. 26.
    Particle Data Group Collaboration (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014)CrossRefGoogle Scholar
  27. 27.
    HADES Collaboration (G. Agakishiev et al.), Eur. Phys. J. A 41, 243 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    HADES Collaboration (M. Lorenz et al.), PoS (BORMIO2010) 038, (2010)Google Scholar
  29. 29.
    FOPI Collaboration (K. Piasecki et al.), Phys. Rev. C 91, 054904 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    FOPI Collaboration (P. Gasik), arXiv:1512.06988 [nucl-ex]
  31. 31.
    N. Herrmann, J.P. Wessels, T. Wienold, Annu. Rev. Nucl. Part. Sci. 49, 581 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    W. Reisdorf, H.G. Ritter, Annu. Rev. Nucl. Part. Sci. 47, 663 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    FOPI Collaboration (W. Reisdorf et al.), Nucl. Phys. A 848, 366 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 225 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    HADES Collaboration (H. Schuldes et al.), J. Phys. Conf. Ser. 599, 012028 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    HADES Collaboration (P. Tlusty), arXiv:0906.2309 (2009)
  37. 37.
    HADES Collaboration (G. Agakishiev et al.), Phys. Rev. C 80, 025209 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    HADES Collaboration (G. Agakishiev et al.), Phys. Rev. C 82, 044907 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    HADES Collaboration (G. Agakishiev et al.), Eur. Phys. J. A 49, 34 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    HADES Collaboration (G. Agakishiev et al.), Phys. Rev. C 84, 014902 (2011)ADSGoogle Scholar
  41. 41.
    HADES Collaboration (G. Agakishiev et al.), Phys. Rev. Lett. 103, 132301 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    F.D. Berg et al., Phys. Rev. Lett. 72, 977 (1994)ADSCrossRefGoogle Scholar
  43. 43.
    TAPS Collaboration (R. Holzmann et al.), Phys. Rev. C 56, 2920 (1997)Google Scholar
  44. 44.
    O. Buss et al., Phys. Rep. 512, 1 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    HADES Collaboration (P. Tlusty et al.), PoS BORMIO 2012, 019 (2012)Google Scholar
  46. 46.
    HADES Collaboration (G. Agakishiev et al.), Phys. Lett. B 715, 304 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    HADES Collaboration (G. Agakishiev et al.), Phys. Rev. C 88, 024904 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    HADES Collaboration (G. Agakishiev et al.), Eur. Phys. J. A 50, 81 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    HADES Collaboration (G. Agakishiev et al.), Phys. Rev. C 90, 054906 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    HADES Collaboration (G. Agakishiev et al.), Phys. Rev. Lett. 114, 212301 (2015)ADSCrossRefGoogle Scholar
  51. 51.
    R.J. Glauber, G. Matthiae, Nucl. Phys. B 21, 135 (1970)ADSCrossRefGoogle Scholar
  52. 52.
    J. Weil, H. van Hees, U. Mosel, Eur. Phys. J. A 48, 111 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    J. Weil, private communication of the corresponding omega yield in full phase spaceGoogle Scholar
  54. 54.
    R. Averbeck, R. Holzmann, V. Metag, R.S. Simon, Phys. Rev. C 67, 024903 (2003)ADSCrossRefGoogle Scholar
  55. 55.
    C. Markert, G. Torrieri, J. Rafelski, AIP Conf. Proc. 631, 533 (2002)ADSCrossRefGoogle Scholar
  56. 56.
    J. Steinheimer, M. Lorenz, F. Becattini, R. Stock, M. Bleicher, arXiv:1603.02051 [nucl-th]
  57. 57.
    F. Becattini, J. Manninen, M. Gazdzicki, Phys. Rev. C 73, 044905 (2006)ADSCrossRefGoogle Scholar
  58. 58.
    F. Li, L.W. Chen, C.M. Ko, S.H. Lee, Phys. Rev. C 85, 064902 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    G. Graef, J. Steinheimer, F. Li, M. Bleicher, Phys. Rev. C 90, 064909 (2014)ADSCrossRefGoogle Scholar
  60. 60.
    E.E. Kolomeitsev, B. Tomasik, D.N. Voskresensky, Phys. Rev. C 86, 054909 (2012)ADSCrossRefGoogle Scholar
  61. 61.
    E.L. Bratkovskaya, J. Aichelin, M. Thomere, S. Vogel, M. Bleicher, Phys. Rev. C 87, 064907 (2013)ADSCrossRefGoogle Scholar
  62. 62.
    HADES Collaboration (G. Agakishiev et al.), Phys. Lett. B 742, 242 (2015)ADSCrossRefGoogle Scholar
  63. 63.
    HADES Collaboration (G. Agakishiev et al.), Phys. Rev. C 85, 035203 (2012)ADSGoogle Scholar
  64. 64.
    M. Ronniger, B.Ch. Metsch, Eur. Phys. J. A 47, 162 (2011)ADSCrossRefGoogle Scholar
  65. 65.
    PANDA Collaboration (M.F.M. Lutz), arXiv:0903.3905 (2009)

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • HADES Collaboration
  • G. Agakishiev
    • 7
  • O. Arnold
    • 10
    • 9
  • A. Balanda
    • 3
  • D. Belver
    • 18
  • A. Belyaev
    • 7
  • J. C. Berger-Chen
    • 10
    • 9
  • A. Blanco
    • 2
  • M. Böhmer
    • 10
  • J. L. Boyard
    • 16
  • P. Cabanelas
    • 18
  • E. Castro
    • 18
  • S. Chernenko
    • 7
  • M. Destefanis
    • 11
  • F. Dohrmann
    • 6
  • A. Dybczak
    • 3
  • E. Epple
    • 10
    • 9
  • L. Fabbietti
    • 10
    • 9
  • O. Fateev
    • 7
  • P. Finocchiaro
    • 1
  • P. Fonte
    • 2
  • J. Friese
    • 10
  • I. Fröhlich
    • 8
  • T. Galatyuk
    • 5
  • J. A. Garzón
    • 18
  • R. Gernhäuser
    • 10
  • C. Gilardi
    • 11
  • K. Göbel
    • 8
  • M. Golubeva
    • 13
  • D. González-Díaz
    • 5
  • F. Guber
    • 13
  • M. Gumberidze
    • 5
  • T. Heinz
    • 4
  • T. Hennino
    • 16
  • R. Holzmann
    • 4
  • A. Ierusalimov
    • 7
  • I. Iori
    • 12
  • A. Ivashkin
    • 13
  • M. Jurkovic
    • 10
  • B. Kämpfer
    • 6
  • T. Karavicheva
    • 13
  • I. Koenig
    • 4
  • W. Koenig
    • 4
  • B. W. Kolb
    • 4
  • G. Kornakov
    • 5
  • R. Kotte
    • 6
  • A. Krása
    • 17
  • F. Krizek
    • 17
  • R. Krücken
    • 10
  • H. Kuc
    • 3
    • 16
  • W. Kühn
    • 11
  • A. Kugler
    • 17
  • A. Kurepin
    • 13
  • V. Ladygin
    • 7
  • R. Lalik
    • 10
    • 9
  • J. S. Lange
    • 11
  • S. Lang
    • 4
  • K. Lapidus
    • 10
    • 9
  • A. Lebedev
    • 14
  • T. Liu
    • 16
  • L. Lopes
    • 2
  • M. Lorenz
    • 8
  • L. Maier
    • 10
  • A. Mangiarotti
    • 2
  • J. Markert
    • 8
  • V. Metag
    • 11
  • B. Michalska
    • 3
  • D. Mihaylov
    • 10
    • 9
  • J. Michel
    • 8
  • E. Morinière
    • 16
  • J. Mousa
    • 15
  • C. Müntz
    • 8
  • R. Münzer
    • 10
    • 9
  • L. Naumann
    • 6
  • Y. C. Pachmayer
    • 8
  • M. Palka
    • 3
  • Y. Parpottas
    • 15
  • V. Pechenov
    • 4
  • O. Pechenova
    • 8
  • J. Pietraszko
    • 4
  • W. Przygoda
    • 3
  • B. Ramstein
    • 16
  • L. Rehnisch
    • 8
  • A. Reshetin
    • 13
  • A. Rustamov
    • 8
  • A. Sadovsky
    • 13
  • P. Salabura
    • 3
  • T. Scheib
    • 8
  • A. Schmah
    • 19
  • H. Schuldes
    • 8
  • E. Schwab
    • 4
  • J. Siebenson
    • 10
  • Yu. G. Sobolev
    • 17
  • S. Spataro
    • 20
  • B. Spruck
    • 11
  • H. Ströbele
    • 8
  • J. Stroth
    • 8
    • 4
  • C. Sturm
    • 4
  • A. Tarantola
    • 8
  • K. Teilab
    • 8
  • P. Tlusty
    • 17
  • M. Traxler
    • 4
  • R. Trebacz
    • 3
  • H. Tsertos
    • 15
  • T. Vasiliev
    • 7
  • V. Wagner
    • 17
  • M. Weber
    • 10
  • C. Wendisch
    • 4
  • J. Wirth
    • 10
    • 9
  • M. Wisniowski
    • 3
  • J. Wüstenfeld
    • 6
  • S. Yurevich
    • 4
  • Y. Zanevsky
    • 7
  1. 1.INFN - Laboratori Nazionali del SudCataniaItaly
  2. 2.LIP-Laboratório de Instrumentação e Física Experimental de PartículasCoimbraPortugal
  3. 3.Smoluchowski Institute of PhysicsJagiellonian University of CracowKrakówPoland
  4. 4.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  5. 5.Technische Universität DarmstadtDarmstadtGermany
  6. 6.Institut für StrahlenphysikHelmholtz-Zentrum Dresden-RossendorfDresdenGermany
  7. 7.Joint Institute of Nuclear ResearchDubnaRussia
  8. 8.Institut für KernphysikGoethe-UniversitätFrankfurtGermany
  9. 9.Excellence Cluster “Origin and Structure of the Universe”GarchingGermany
  10. 10.Physik Department E12Technische Universität MünchenGarchingGermany
  11. 11.II.Physikalisches InstitutJustus Liebig Universität GiessenGiessenGermany
  12. 12.Sezione di MilanoINFNMilanoItaly
  13. 13.Institute for Nuclear ResearchRussian Academy of ScienceMoscowRussia
  14. 14.Institute of Theoretical and Experimental PhysicsMoscowRussia
  15. 15.Department of PhysicsUniversity of CyprusNicosiaCyprus
  16. 16.Institut de Physique Nucléaire (UMR 8608)CNRS/IN2P3 - Université Paris SudOrsay CedexFrance
  17. 17.Nuclear Physics InstituteAcademy of Sciences of Czech RepublicRezCzech Republic
  18. 18.LabCAF. F. FísicaUniv. de Santiago de CompostelaSantiago de CompostelaSpain
  19. 19.Lawrence Berkeley National LaboratoryBerkeleyUSA
  20. 20.Dipartimento di Fisica and INFNUniversità di TorinoTorinoItaly

Personalised recommendations