Advertisement

Thermodynamically anomalous regions and possible new signals of mixed-phase formation

  • K. A. BugaevEmail author
  • A. I. Ivanytskyi
  • D. R. Oliinychenko
  • V. V. Sagun
  • I. N. Mishustin
  • D. H. Rischke
  • L. M. Satarov
  • G. M. Zinovjev
Regular Article - Theoretical Physics

Abstract.

Using an advanced version of the hadron resonance gas model we have found indications for irregularities in data for hadrons produced in relativistic heavy-ion collisions. These include an abrupt change of the effective number of degrees of freedom, a change of the slope of the ratio of lambda hyperons to protons at laboratory energies 8.6-11.6A GeV, as well as a plateau in the collision-energy dependence of the thermal pion number per baryon at laboratory energies 6.9-11.6A GeV. We also find hints for the existence of plateaus in the collision-energy dependence of the entropy per baryon and the total pion number per baryon, which are correlated to the one of the thermal pion number per baryon at the same collision-energy range. Also, we observe a sharp peak in the dimensionless trace anomaly at a laboratory energy of 11.6A GeV. On the basis of the generalized shock-adiabat model we demonstrate that these observations give evidence for the anomalous thermodynamic properties of the mixed phase at its boundary to the quark-gluon plasma. We argue that the trace-anomaly peak and the local minimum of the generalized specific volume observed at a laboratory energy of 11.6A GeV provide a signal for the formation of a mixed phase between the quark-gluon plasma and the hadron phase. This naturally explains the change of slope in the energy dependence of the yield of lambda hyperons per proton at a laboratory energy of 8.6A GeV.

References

  1. 1.
    M. Gazdzicki, Z. Phys. C 66, 659 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    M. Gazdzicki, M.I. Gorenstein, Acta Phys. Pol. B 30, 2705 (1999)ADSGoogle Scholar
  3. 3.
    M.I. Gorenstein, M. Gazdzicki, K.A. Bugaev, Phys. Lett. B 567, 175 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    M. Gazdzicki, M.I. Gorenstein, P. Seyboth, Acta Phys. Pol. B 42, 307 (2011)CrossRefGoogle Scholar
  5. 5.
    D.R. Oliinychenko, K.A. Bugaev, A.S. Sorin, Ukr. J. Phys. 58, 211 (2013)CrossRefGoogle Scholar
  6. 6.
    K.A. Bugaev, D.R. Oliinychenko, A.S. Sorin, G.M. Zinovjev, Eur. Phys. J. A 49, 30 (2013)CrossRefGoogle Scholar
  7. 7.
    K.A. Bugaev et al., Europhys. Lett. 104, 22002 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    K.A. Bugaev et al., Ukr. J. Phys. 60, 181 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Cleymans, H. Satz, Zeit. Phys. C 57, 135 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    J. Cleymans, K. Redlich, Phys. Rev. Lett. 81, 5284 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    P. Braun-Munzinger, I. Heppe, J. Stachel, Phys. Lett. B 465, 15 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    P. Braun-Munzinger, J. Cleymans, H. Oeschler, K. Redlich, Nucl. Phys. A 697, 902 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 772, 167 (2006) and references thereinADSCrossRefGoogle Scholar
  14. 14.
    A. Andronic, P. Braun-Munzinger, J. Stachel, Phys. Lett. B 673, 142 (2009) and references thereinADSCrossRefGoogle Scholar
  15. 15.
    K.A. Bugaev, M.I. Gorenstein, B. Kämpfer, V.I. Zhdanov, Phys. Rev. D 40, 2903 (1989)ADSCrossRefGoogle Scholar
  16. 16.
    K.A. Bugaev, M.I. Gorenstein, D.H. Rischke, JETP Lett. 52, 1121 (1990)Google Scholar
  17. 17.
    K.A. Bugaev, M.I. Gorenstein, D.H. Rischke, Phys. Lett. B 255, 18 (1991) and references thereinADSCrossRefGoogle Scholar
  18. 18.
    J. Letessier, J. Rafelski, Eur. Phys. J. A 35, 221 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    S. Wheaton, J. Cleymans, M. Hauer, Comput. Phys. Commun. 180, 84 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    J.L. Klay et al., Phys. Rev. C 68, 054905 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    L. Ahle et al., Phys. Lett. B 476, 1 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    B.B. Back et al., Phys. Rev. Lett. 86, 1970 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    J.L. Klay et al., Phys. Rev. Lett. 88, 102301 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    C. Pinkenburg et al., Nucl. Phys. A 698, 495c (2002)ADSCrossRefGoogle Scholar
  25. 25.
    P. Chung et al., Phys. Rev. Lett. 91, 202301 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    S. Albergo, R. Bellwied, M. Bennett, D. Boemi, B. Bonner, H. Caines, W. Christie, S. Costa et al., Phys. Rev. Lett. 88, 062301 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    S.V. Afanasiev et al., Phys. Rev. C 66, 054902 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    S.V. Afanasiev et al., Phys. Rev. C 69, 024902 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    T. Anticic et al., Phys. Rev. Lett. 93, 022302 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    S.V. Afanasiev et al., Phys. Lett. B 538, 275 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    C. Alt et al., Phys. Rev. Lett. 94, 192301 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    S.V. Afanasiev et al., Phys. Lett. B 491, 59 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    B. Abelev et al., Phys. Rev. C 81, 024911 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    B. Abelev et al., Phys. Rev. C 79, 034909 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    J. Adams et al., Phys. Rev. Lett. 92, 182301 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    J. Adams et al., Phys. Lett. B 567, 167 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    C. Adler et al., Phys. Rev. C 65, 041901(R) (2002)ADSCrossRefGoogle Scholar
  38. 38.
    J. Adams et al., Phys. Rev. Lett. 92, 112301 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    J. Adams et al., Phys. Lett. B 612, 181 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    A. Billmeier et al., J. Phys. G 30, S363 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    K.A. Bugaev, M.I. Gorenstein, Z. Phys. C 43, 261 (1989) and references thereinADSCrossRefGoogle Scholar
  42. 42.
    K.A. Bugaev, M.I. Gorenstein, V.I. Zhdanov, Teor. Mat. Fiz. 80, 138 (1989) (in Russian)CrossRefGoogle Scholar
  43. 43.
    Sz. Borsanyi et al., JHEP 08, 053 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    V.M. Galitskij, I.N. Mishustin, Phys. Lett. B 72, 285 (1978)ADSCrossRefGoogle Scholar
  45. 45.
    H. Stöcker, G. Graebner, J.A. Maruhn, W. Greiner, Phys. Lett. B 95, 192 (1980)ADSCrossRefGoogle Scholar
  46. 46.
    B. Kämpfer, J. Phys. G 9, 1487 (1983)ADSCrossRefGoogle Scholar
  47. 47.
    H. Stöcker, W. Greiner, Phys. Rep. 137, 277 (1986) and references thereinADSCrossRefGoogle Scholar
  48. 48.
    H.W Barz., L.P. Csernai, B. Kämpfer, B. Lukacs, Phys. Rev. D 32, 115 (1985)ADSCrossRefGoogle Scholar
  49. 49.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1979)Google Scholar
  50. 50.
    Y.B. Zel’dovich, Y.P. Raiser, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic Press, New York, 1967)Google Scholar
  51. 51.
    B.L. Rozhdestvensky, N.N. Yanenko, Systems of Quasi-Linear Equations (Nauka, Moscow, 1978)Google Scholar
  52. 52.
    A.V. Merdeev, L.M. Satarov, I.N. Mishustin, Phys. Rev. C 84, 014907 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    Yu.B. Ivanov, V.N. Russkikh, V.D. Toneev, Phys. Rev. C 73, 044904 (2006)ADSCrossRefGoogle Scholar
  54. 54.
    J.D. Walecka, Ann. Phys. 83, 491 (1974)ADSCrossRefGoogle Scholar
  55. 55.
    J. Zimanyi et al., Nucl. Phys. A 484, 647 (1988)ADSCrossRefGoogle Scholar
  56. 56.
    H.A. Bethe, Office of Scientific Research and Development Report No. 545, 25 (1942)Google Scholar
  57. 57.
    A. Chodos et al., Phys. Rev. D 9, 3471 (1974)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    K.A. Bugaev, Nucl. Phys. A 606, 559 (1996)ADSCrossRefGoogle Scholar
  59. 59.
    K.A. Bugaev, M.I. Gorenstein, W. Greiner, J. Phys. G 25, 2147 (1999)ADSCrossRefGoogle Scholar
  60. 60.
    K.A. Bugaev et al., PoS Baldin ISHEPP XXI 2012, 017 (2012)Google Scholar
  61. 61.
    Y. Aoki et al., Phys. Lett. B 643, 46 (2006)ADSCrossRefGoogle Scholar
  62. 62.
    K.A. Bugaev, V.K. Petrov, G.M. Zinovjev, Europhys. Lett. 85, 22002 (2009)ADSCrossRefGoogle Scholar
  63. 63.
    K.A. Bugaev, V.K. Petrov, G.M. Zinovjev, Phys. Rev. C 79, 054913 (2009)ADSCrossRefGoogle Scholar
  64. 64.
    M. Lisa, S. Pratt, R. Soltz, U. Wiedemann, Ann. Rev. Nucl. Part. Sci. 55, 357 (2005)ADSCrossRefGoogle Scholar
  65. 65.
    S. Chatterjee, R.M. Godbole, S. Gupta, Phys. Lett. B 727, 554 (2013)ADSCrossRefGoogle Scholar
  66. 66.
    J. Rafelski, Phys. Lett. B 62, 333 (1991)ADSCrossRefGoogle Scholar
  67. 67.
    V.V. Sagun, Ukr. J. Phys. 59, 755 (2014)CrossRefGoogle Scholar
  68. 68.
    J. Rafelski, B. Müller, Phys. Rev. Lett. 48, 1066 (1982)ADSCrossRefGoogle Scholar
  69. 69.
    V.A. Kizka, V.S. Trubnikov, K.A. Bugaev, D.R. Oliinychenko, arXiv:1504.06483 [hep-ph] (2015)
  70. 70.
    R. Lacey et al., Phys. Rev. Lett. 112, 082302 (2014)ADSCrossRefGoogle Scholar
  71. 71.
    R.A. Lacey, talk at the 24th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions “Quark Matter 2014”, 19-24 May, 2014, Darmstadt, Germany, arXiv:1408.1343 [nucl-ex]
  72. 72.
    A. Andronic et al., Nucl. Phys. A 837, 65 (2010)ADSCrossRefGoogle Scholar
  73. 73.
    J.R. Taylor, An Introduction to Error Analysis (University Science Book, Mill Valley, CA, 1982).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • K. A. Bugaev
    • 1
    Email author
  • A. I. Ivanytskyi
    • 1
  • D. R. Oliinychenko
    • 1
    • 2
  • V. V. Sagun
    • 1
  • I. N. Mishustin
    • 2
    • 3
  • D. H. Rischke
    • 4
  • L. M. Satarov
    • 2
    • 3
  • G. M. Zinovjev
    • 1
  1. 1.Bogolyubov Institute for Theoretical PhysicsKievUkraine
  2. 2.Frankfurt Institute for Advanced StudiesFrankfurt am MainGermany
  3. 3.Kurchatov InstituteRussian Research CenterMoscowRussia
  4. 4.Institute for Theoretical PhysicsGoethe UniversityFrankfurt am MainGermany

Personalised recommendations