Advertisement

The MAGNEX spectrometer: Results and perspectives

  • F. CappuzzelloEmail author
  • C. Agodi
  • D. Carbone
  • M. Cavallaro
Review

Abstract.

This review discusses the main achievements and future perspectives of the MAGNEX spectrometer at the INFN-LNS laboratory in Catania (Italy). MAGNEX is a large-acceptance magnetic spectrometer for the detection of the ions emitted in nuclear collisions below Fermi energy. In the first part of the paper an overview of the MAGNEX features is presented. The successful application to the precise reconstruction of the momentum vector, to the identification of the ion masses and to the determination of the transport efficiency is demonstrated by in-beam tests. In the second part, an overview of the most relevant scientific achievements is given. Results from nuclear elastic and inelastic scattering as well as from transfer and charge-exchange reactions in a wide range of masses of the colliding systems and incident energies are shown. The role of MAGNEX in solving old and new puzzles in nuclear structure and direct reaction mechanisms is emphasized. One example is the recently observed signature of the long searched Giant Pairing Vibration. Finally, the new challenging opportunities to use MAGNEX for future experiments are briefly reported. In particular, the use of double charge-exchange reactions toward the determination of the nuclear matrix elements entering in the expression of the half-life of neutrinoless double beta decay is discussed. The new NUMEN project of INFN, aiming at these investigations, is introduced. The challenges connected to the major technical upgrade required by the project in order to investigate rare processes under high fluxes of detected heavy ions are outlined.

References

  1. 1.
    F. Cappuzzello, MAGNEX: an innovative large acceptance spectrometer for nuclear reaction studies, in Magnets: Types, Uses and Safety (Nova Publisher Inc., New York, 2011) pp. 1--63Google Scholar
  2. 2.
    M. Berz, Modern Map Methods in Particle Beam Physics (Academic Press, San Diego, 1999) ISBN 0-12-014750-5Google Scholar
  3. 3.
    M. Berz, Forward algorithms for high orders and many variables, in Automatic Differentiation of Algoritms: Theory, Implementation and Application (SIAM, 1991)Google Scholar
  4. 4.
    M. Berz, Automatic differentaition as non-archimedean analysis, in Computer Arithmetic and Enclosure Methods, (Elsevier Science Publishers, Amsterdam, 1992) p. 439Google Scholar
  5. 5.
    M. Berz, Nucl. Instrum. Methods A 298, 426 (1990)ADSCrossRefGoogle Scholar
  6. 6.
    A. Cunsolo et al., Nucl. Instrum. Methods A 481, 48 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    A. Cunsolo et al., Nucl. Instrum. Methods A 484, 56 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    M. Cavallaro et al., AIP Conf. Proc. 1213, 198 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    F. Cappuzzello, D. Carbone, M. Cavallaro, Nucl. Instrum. Methods A 638, 74 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    K. Makino, M. Berz, Nucl. Instrum. Methods A 558, 346 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    F. Cappuzzello et al., Nucl. Instrum. Methods A 621, 419 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    M. Cavallaro et al., Nucl. Instrum. Methods A 637, 77 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    H.A. Enge, Nucl. Instrum. Methods 162, 161 (1979)ADSCrossRefGoogle Scholar
  14. 14.
    W.W. Buechner et al., Phys. Rev. 74, 1569 (1948)ADSCrossRefGoogle Scholar
  15. 15.
    W.W. Buechner et al., Phys. Rev. 74, 1226 (1948)Google Scholar
  16. 16.
    J.D. Cockroft, J. Sci. Instrum. 71, (1933)Google Scholar
  17. 17.
    C.W. Snyder et al., Phys. Rev. 74, 1564 (1948)Google Scholar
  18. 18.
    C.P. Browne, W.W. Buechner, Rev. Sci. Instrum. 27, 899 (1956)ADSCrossRefGoogle Scholar
  19. 19.
    W.W. Buechner et al., Phys. Rev. 95, 609 (1954)Google Scholar
  20. 20.
    J. Borggren et al., Nucl. Instrum. Methods 24, 1 (1963)ADSCrossRefGoogle Scholar
  21. 21.
    J.E. Spencer, H.A. Enge, Nucl. Instrum. Methods 49, 181 (1967)ADSCrossRefGoogle Scholar
  22. 22.
    H.A. Enge, Nucl. Instrum. Methods 28, 19 (1964)CrossRefGoogle Scholar
  23. 23.
    R.M. DeVries et al., Nucl. Instrum. Methods 140, 479 (1977)ADSCrossRefGoogle Scholar
  24. 24.
    D.L. Hendrie et al., Bull. Am. Phys. Soc. 15, 650 (1970)Google Scholar
  25. 25.
    K.L. Brown, A first- and second-order matrix theory for the design of beam transport systems and charged particle spectrometers, SLAC Report no. 75 (Stanford University, 1982)Google Scholar
  26. 26.
    S.B. Kowalski, H.A. Enge, Program RAYTRACE (1987)Google Scholar
  27. 27.
    H.A. Enge, Progress Reports, Laboratory for Nuclear Science (MIT, Feb. 1957 and May 1957)Google Scholar
  28. 28.
    R. Middleton, S. Hinds, Nucl. Phys. 34, 404 (1962)CrossRefGoogle Scholar
  29. 29.
    G. Charpak et al., Nucl. Instrum. Methods 62, 235 (1968)CrossRefGoogle Scholar
  30. 30.
    H.A. Enge, S.B. Kowalski, Proceedings of the International Conference on Magnet Technology (MT 3), DESY, Hamburg, (1970) p. 366Google Scholar
  31. 31.
    M.J. Levine, H.A. Enge, Bull. Am. Phys. Soc. 15, 1688 (1970)Google Scholar
  32. 32.
    H. Ikegami et al., Nucl. Instrum. Methods 187, 13 (1981)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Sugiyama et al., Nucl. Instrum. Methods 187, 25 (1981)ADSCrossRefGoogle Scholar
  34. 34.
    T. Walcher, MPI-4-1974-V25 Report (Max Plank Institute für Kernphysik, Heidelberg, 1974)Google Scholar
  35. 35.
    F. PiJhlhofer, contribution to the Study Weekend on Use of Magnetic Spectrometers in Nuclear Physics, Daresbury March, 1979Google Scholar
  36. 36.
    B.L. Cohen, Rev. Sci. Instrum. 30, 415 (1959)ADSCrossRefGoogle Scholar
  37. 37.
    B. Sjogren, Nucl. Instrum. Methods 7, 76 (1969)ADSCrossRefGoogle Scholar
  38. 38.
    D.L. Hendrie, in Nuclear Spectroscopy and Reactions, Part A, edited by J. Cerny (Academic Press, New York, 1974) p. 365Google Scholar
  39. 39.
    S.A. Martin et al., Nucl. Instrum. Methods 214, 281 (1983)CrossRefGoogle Scholar
  40. 40.
    A.M. van den Berg, KVI report KVI-165i (1991)Google Scholar
  41. 41.
    L. Bianchi et al., Nucl. Instrum. Methods A 276, 509 (1989)ADSCrossRefGoogle Scholar
  42. 42.
    M. Fujiwara et al., Nucl. Instrum. Methods A 422, 484 (1999)ADSCrossRefGoogle Scholar
  43. 43.
    T. Kawabata et al., Nucl. Instrum. Methods B 266, 4201 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    D.J.J. de Lange et al., Nucl. Instrum. Methods A 412, 254 (1998)ADSCrossRefGoogle Scholar
  45. 45.
    A.M. Stefanini et al., Nucl. Phys. A 701, 217 (2002)ADSCrossRefGoogle Scholar
  46. 46.
    VAMOS Collaboration (H. Savajols), Nucl. Instrum. Methods B 204, 146 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    The R3B Collaboration (T. Aumann), Technical Proposal for the Design, Construction, Commissioning and Operation of R3B, A Universal Setup of Kinematical Complete Measurements of Reactions with Relativistic Radioactive Beams, 2005, Technical Report (2005)Google Scholar
  48. 48.
    S. Shimoura et al., Nucl. Instrum. Methods B 266, 4131 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    K. Yoneda et al., RIKEN Accel. Prog. Rep. 42, 26 (2009)Google Scholar
  50. 50.
    A. Lazzaro et al., Nucl. Instrum. Methods A 591, 394 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    A. Lazzaro et al., Nucl. Instrum. Methods A 585, 136 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    C. Boiano et al., IEEE Trans. Nucl. Sci. 55, 3563 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    M. Cavallaro, First Application of the MAGNEX spectrometer: investigation of the 19F(7Li,7Be)19O reaction at 52.2 MeV, PhD Thesis, University of Catania, 2008Google Scholar
  54. 54.
    M. Cavallaro et al., Eur. Phys. J. A 48, 59 (2012)ADSCrossRefGoogle Scholar
  55. 55.
    D. Carbone, F. Cappuzzello, M. Cavallaro, Eur. Phys. J. A 48, 60 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    GEANT detector description and simulation tool (version 3.21), CERN Program Library Long Writeup W5013, Application Software Group, CERN, Geneva, Switzerland (1998)Google Scholar
  57. 57.
    A. Lazzaro, The large acceptance and high resolution ray-tracing magnetic spectrometer MAGNEX, PhD Thesis, Università di Catania, 2002Google Scholar
  58. 58.
    D.C. Carey, The Optics of Charged Particle Beams (Harwood Academic Publisher, London, 1987)Google Scholar
  59. 59.
    M. Berz et al., Phys. Rev. C 47, 537 (1993)ADSCrossRefGoogle Scholar
  60. 60.
    A. Lazzaro et al., Nucl. Instrum. Methods A 602, 494 (2009)ADSCrossRefGoogle Scholar
  61. 61.
    A. Lazzaro et al., Nucl. Instrum. Methods A 570, 192 (2007)ADSCrossRefGoogle Scholar
  62. 62.
    O. Bunemann et al., Can. J. Res. A 27, 191 (1949)CrossRefGoogle Scholar
  63. 63.
    K. Lau, J. Pyrlik, Nucl. Instrum. Methods A 366, 298 (1995)ADSCrossRefGoogle Scholar
  64. 64.
    B. Schmidt, Nucl. Instrum. Methods A 252, 579 (1986)ADSCrossRefGoogle Scholar
  65. 65.
    C. Boiano et al., IEEE Trans. Nucl. Sci. 51, 1 (2004)ADSCrossRefGoogle Scholar
  66. 66.
    M. Bordessoule et al., Nucl. Instrum. Methods A 390, 79 (1997)ADSCrossRefGoogle Scholar
  67. 67.
    A. Cunsolo et al., Eur. Phys. J. ST 150, 343 (2007)CrossRefGoogle Scholar
  68. 68.
    K. Lau, J. Pyrlik, Nucl. Instrum. Methods A 354, 376 (1995)ADSCrossRefGoogle Scholar
  69. 69.
    G. Charpak, G. Melchart, G. Petersen, F. Sauli, Nucl. Instrum. Methods 167, 455 (1979)ADSCrossRefGoogle Scholar
  70. 70.
    X. Liu et al., Nucl. Instrum. Methods A 432, 66 (1999)ADSCrossRefGoogle Scholar
  71. 71.
    J. Ziegler, SRIM-2008, version 04 (Copyright: SRIM.com. All righs reserved)Google Scholar
  72. 72.
    R. Degenhardt, M. Berz, Nucl. Instrum. Methods A 427, 151 (1999)ADSCrossRefGoogle Scholar
  73. 73.
    M.A. Candido Ribeiro et al., Phys. Rev. Lett. 78, 3270 (1997)ADSCrossRefGoogle Scholar
  74. 74.
    M. Cavallaro, to be published in Phys. Rev. C (2016)Google Scholar
  75. 75.
    H. Laurent et al., Nucl. Instrum. Methods A 326, 517 (1993)ADSCrossRefGoogle Scholar
  76. 76.
    M. Cavallaro et al., Nucl. Instrum. Methods A 700, 65 (2013)ADSCrossRefGoogle Scholar
  77. 77.
    D. Pereira et al., Phys. Lett. B 710, 426 (2012)ADSCrossRefGoogle Scholar
  78. 78.
    M. Cavallaro et al., Nucl. Instrum. Methods A 648, 46 (2011)ADSCrossRefGoogle Scholar
  79. 79.
    J.R.B. Oliveira et al., J. Phys. G 40, 105101 (2013)ADSCrossRefGoogle Scholar
  80. 80.
    F. Cappuzzello et al., Nucl. Instrum. Methods A 763, 314 (2014)ADSCrossRefGoogle Scholar
  81. 81.
    F. Cappuzzello, to be published in Eur. Phys. J. AGoogle Scholar
  82. 82.
    D. Pereira et al., Phys. Lett. B 670, 330 (2009)ADSCrossRefGoogle Scholar
  83. 83.
    A. Kiss et al., Phys. Rev. Lett. 37, 1188 (1976)ADSCrossRefGoogle Scholar
  84. 84.
    N. Austern, J.S. Blair, Ann. Phys. 33, 15 (1965)ADSMathSciNetCrossRefGoogle Scholar
  85. 85.
    P. Fröbich, R. Lipperheide, Theory of Nuclear Reactions (Oxford University Press Inc., New York, 1996)Google Scholar
  86. 86.
    Ch. Betsou et al., Eur. Phys. J. A 51, 55 (2015)CrossRefGoogle Scholar
  87. 87.
    V. Soukeras et al., Phys. Rev. C 91, 057601 (2015)ADSCrossRefGoogle Scholar
  88. 88.
    R.A. Broglia, O. Hansen, C. Riedel, in Advances in Nuclear Physics, edited by M. Baranger, E. Vogt, Vol. 6 (Plenum Press, New York, 1973), pp. 287--457Google Scholar
  89. 89.
    W.J. Mulhall, R.J. Liotta, J.A. Evans, R.P.J. Perazzo, Nucl. Phys. A 93, 261 (1967)ADSCrossRefGoogle Scholar
  90. 90.
    C.H. Dasso, E. Maglione, G. Pollarolo, Nucl. Phys. A 500, 127 (1989)ADSCrossRefGoogle Scholar
  91. 91.
    F. Cappuzzello et al., Phys. Lett. B 711, 347 (2012)ADSCrossRefGoogle Scholar
  92. 92.
    M. Cavallaro et al., Phys. Rev. C 88, 054601 (2013)ADSCrossRefGoogle Scholar
  93. 93.
    S. Kahana, A.J. Baltz, Adv. Nucl. Phys. 9, 1 (1977)CrossRefGoogle Scholar
  94. 94.
  95. 95.
    M. Cavallaro et al., Eur. Phys. J. Web of Conferences 66, 03017 (2014)CrossRefGoogle Scholar
  96. 96.
    M. Cavallaro et al., J. Phys. Conf. Ser. 515, 012003 (2015)ADSCrossRefGoogle Scholar
  97. 97.
    F. Cappuzzello et al., AIP Conf. Proc. 1625, 41 (2014)ADSCrossRefGoogle Scholar
  98. 98.
    M. Cavallaro et al., AIP Conf. Proc. 1377, 234 (2011)ADSCrossRefGoogle Scholar
  99. 99.
    S. Mordechai et al., Nucl. Phys. A 301, 463 (1978)ADSCrossRefGoogle Scholar
  100. 100.
    M. Cavallaro et al., AIP Conf. Proc. 1625, 38 (2014)ADSCrossRefGoogle Scholar
  101. 101.
    A. Bonaccorso, I. Lhenry, T. Soumijarvi, Phys. Rev. C 49, 329 (1994)ADSCrossRefGoogle Scholar
  102. 102.
    A. Bonaccorso, R.J. Charity, Phys. Rev. C 89, 024619 (2014)ADSCrossRefGoogle Scholar
  103. 103.
    EXFOR nuclear data library, http://www-nds.iaea.org/exfor/exfor.htm
  104. 104.
    I. Murata et al., Conf. Nucl. Data Sci. Technol. 2, 999 (2007)Google Scholar
  105. 105.
    D.M. Drake et al., Nucl. Sci. Eng. 63, 401 (1977)Google Scholar
  106. 106.
    H.C. Catron et al., Phys. Rev. 123, 218 (1961)ADSCrossRefGoogle Scholar
  107. 107.
    G.J. FIsher, Phys. Rev. 108, 99 (1957)ADSCrossRefGoogle Scholar
  108. 108.
    R. Bass, T.W. Bonner, H.P. Haenni, Nucl. Phys. 23, 122 (1961)CrossRefGoogle Scholar
  109. 109.
    P.H. Stelson, F.C. Campbell, Phys. Rev. 106, 1252 (1957)ADSCrossRefGoogle Scholar
  110. 110.
    M.E. Battat, F.L. Ribe, Phys. Rev. 89, 80 (1953)ADSCrossRefGoogle Scholar
  111. 111.
    D. Carbone et al., Phys. Rev. C 90, 064621 (2014)ADSCrossRefGoogle Scholar
  112. 112.
    A. Bonaccorso, D.M. Brink, L. Lo Monaco, J. Phys. G 13, 1407 (1987)ADSCrossRefGoogle Scholar
  113. 113.
    A. Bonaccorso, D.M. Brink, Phys. Rev. C 43, 299 (1991)ADSCrossRefGoogle Scholar
  114. 114.
    A. Bonaccorso, D.M. Brink, Phys. Rev. C 44, 1559 (1991)ADSCrossRefGoogle Scholar
  115. 115.
    D. Carbone et al., Eur. Phys. J. Web of Conferences 66, 03015 (2014)CrossRefGoogle Scholar
  116. 116.
    D. Carbone et al., Acta Phys. Pol. B 45, 431 (2014)CrossRefGoogle Scholar
  117. 117.
    D. Nicolosi et al., Acta Phys. Pol. B 44, 657 (2013)ADSCrossRefGoogle Scholar
  118. 118.
    D. Carbone et al., J. Phys.: Conf. Ser. 312, 082016 (2011)ADSGoogle Scholar
  119. 119.
    F. Cappuzzello et al., Nat. Commun. 6, 6743 (2015)ADSCrossRefGoogle Scholar
  120. 120.
    D. Carbone, Eur. Phys. J. Plus 130, 143 (2015)CrossRefGoogle Scholar
  121. 121.
    R.A. Broglia, D.R. Bes, Phys. Lett. B 69, 129 (1977)ADSCrossRefGoogle Scholar
  122. 122.
    S. Truong, H.T. Fortune, Phys. Rev. C 28, 977 (1983)ADSCrossRefGoogle Scholar
  123. 123.
    D. Carbone et al., J. Phys.: Conf. Ser. 590, 012030 (2015)ADSGoogle Scholar
  124. 124.
    D. Carbone, First experimental evidence of the Giant Pairing Vibration in atomic nuclei, PhD Thesis, University of Catania (2012)Google Scholar
  125. 125.
    J.A. Scarpaci et al., Phys. Lett. B 428, 241 (1998)ADSCrossRefGoogle Scholar
  126. 126.
    D. Lacroix, J.A. Scarpaci, P.h. Chomaz, Nucl. Phys. A 658, 273 (1999)ADSCrossRefGoogle Scholar
  127. 127.
    E. Khan, N. Sandulescu, N.V. Giai, M. Grasso, Phys. Rev. C 69, 014314 (2004)ADSCrossRefGoogle Scholar
  128. 128.
    B. Mouginot et al., Phys. Rev. C 83, 037302 (2011)ADSCrossRefGoogle Scholar
  129. 129.
    W. von Oertzen, A. Vitturi, Rep. Prog. Phys. 64, 1247 (2001)ADSCrossRefGoogle Scholar
  130. 130.
    A.M. Moro, F.M. Nunes, Nucl. Phys. A 767, 138 (2006)ADSCrossRefGoogle Scholar
  131. 131.
    M. De Napoli et al., Acta Phys. Pol. B 45, 437 (2015)CrossRefGoogle Scholar
  132. 132.
    F. Cappuzzello et al., Nucl. Phys. A 739, 30 (2004)ADSCrossRefGoogle Scholar
  133. 133.
    C. Nociforo Eur. Phys. J. A 27, s01, 283 (2006)ADSCrossRefGoogle Scholar
  134. 134.
    S.E.A. Orrigo et al., Phys. Lett. B 633, 499 (2006)ADSCrossRefGoogle Scholar
  135. 135.
    F. Cappuzzello et al., Europhys. Lett. 65, 766 (2004)ADSCrossRefGoogle Scholar
  136. 136.
    M. Cavallaro, Nuovo Cimento C 34, 1 (2011)Google Scholar
  137. 137.
    F. Ajzenberg-Selove et al., Phys. Rev. C 32, 756 (1985)ADSCrossRefGoogle Scholar
  138. 138.
    D.R. Tilley et al., Nucl. Phys. A 595, 1 (1995)ADSCrossRefGoogle Scholar
  139. 139.
    W.P. Alford, B.M. Spicer, Adv. Nucl. Phys. 24, 1 (1998)CrossRefGoogle Scholar
  140. 140.
    T.N. Taddeucci et al., Nucl. Phys. A 469, 125 (1987)ADSCrossRefGoogle Scholar
  141. 141.
    F. Osterfeld, Rev. Mod. Phys. 64, 491 (1992)ADSCrossRefGoogle Scholar
  142. 142.
    D. Frekers et al., Nucl. Phys. A 916, 219 (2013)ADSCrossRefGoogle Scholar
  143. 143.
    Y. Fujita, B. Rubio, W. Gelletly, Prog. Part. Nucl. Phys. 66, 549 (2011)ADSCrossRefGoogle Scholar
  144. 144.
    G.R. Satchler, Direct Nuclear Reactions (Oxford Science Publications, 1983)Google Scholar
  145. 145.
    F. Cappuzzello et al., Eur. Phys. J. A 51, 145 (2015)ADSCrossRefGoogle Scholar
  146. 146.
    Report to the Nuclear Science Advisory Committee, Neutrinoless Double Beta Decay, 2015Google Scholar
  147. 147.
    C. Agodi et al., AIP Conf. Proc. 1686, 020001 (2015)CrossRefGoogle Scholar
  148. 148.
    C. Agodi et al., Nucl. Part. Phys. Proc. 265, 28 (2015)CrossRefGoogle Scholar
  149. 149.
    F. Cappuzzello et al., J. Phys. Conf. Ser. 630, 012018 (2015)ADSCrossRefGoogle Scholar
  150. 150.
    C. Agodi, LNS Activity Report 2013-2014, ISSN 1827-1561Google Scholar
  151. 151.
    N.K. Glendenning, Phys. Rev. C 37, 2733 (1988)ADSCrossRefGoogle Scholar
  152. 152.
    G. Colò et al., Phys. Rev. C 70, 024307 (2004)ADSCrossRefGoogle Scholar
  153. 153.
    T. Li et al., Phys. Rev. Lett. 99, 162503 (2007)ADSCrossRefGoogle Scholar
  154. 154.
    X. Chen et al., Phys. Rev. C 79, 024320 (2009)ADSCrossRefGoogle Scholar
  155. 155.
    T. Aumann, Prog. Part. Nucl. Phys. 59, 3 (2007)ADSCrossRefGoogle Scholar
  156. 156.
    H. Baba et al., Nucl. Phys. A 788, 188 (2007)ADSCrossRefGoogle Scholar
  157. 157.
    C. Monrozeau et al., Phys. Rev. Lett. 100, 042501 (2008)ADSCrossRefGoogle Scholar
  158. 158.
    M. Vandebrouck et al., Phys. Rev. Lett. 113, 032504 (2014)ADSCrossRefGoogle Scholar
  159. 159.
    G. Raciti et al., Nucl. Instrum. Methods B 266, 4632 (2008)ADSCrossRefGoogle Scholar
  160. 160.
    G. Raciti et al., Phys. Rev. Lett. 100, 192503 (2008)ADSCrossRefGoogle Scholar
  161. 161.
    S. Bacca et al., Phys. Rev. Lett. 110, 042503 (2013)ADSCrossRefGoogle Scholar
  162. 162.
    L.C. Chamon et al., Phys. Rev. C 66, 014610 (2002)ADSCrossRefGoogle Scholar
  163. 163.
    E.E. Gross et al., Phys. Rev. 178, 1584 (1969)ADSCrossRefGoogle Scholar
  164. 164.
    M. Baumgartner et al., Nucl. Phys. A 368, 189 (1981)ADSCrossRefGoogle Scholar
  165. 165.
    T. Walcher, Phys. Lett. B 31, 442 (1970)ADSCrossRefGoogle Scholar
  166. 166.
    R. Bijker, F. Iachello, Phys. Rev. Lett. 112, 152501 (2014)ADSCrossRefGoogle Scholar
  167. 167.
    M. Itoh et al., Phys. Rev. C 84, 054308 (2011)ADSCrossRefGoogle Scholar
  168. 168.
    M. Freer et al., Phys. Rev. C 86, 034320 (2012)ADSCrossRefGoogle Scholar
  169. 169.
    W.R. Zimmerman et al., Phys. Rev. Lett. 110, 152502 (2013)ADSCrossRefGoogle Scholar
  170. 170.
    A. Cunsolo et al., Phys. Rev. C 21, 2345 (1980)ADSCrossRefGoogle Scholar
  171. 171.
    M. Voštinar et al., J. Instrum. 8, C12023 (2013)CrossRefGoogle Scholar
  172. 172.
    G. Raciti et al., Nucl. Phys. A 834, 784 (2010)ADSCrossRefGoogle Scholar
  173. 173.
    M. De Napoli et al., Nucl. Instrum. Methods A 600, 618 (2009)ADSCrossRefGoogle Scholar
  174. 174.
    M. Nikl et al., Phys. Status Solidi B 195, 311 (1996)ADSCrossRefGoogle Scholar
  175. 175.
    E.V.D. van Loef et al., Nucl. Instrum. Methods A 486, 254 (2002)ADSCrossRefGoogle Scholar
  176. 176.
    G.F. Knoll, Radiation Detection and Measurement (John Wiley & Sons, 1989) ISBN 0-471-81504-7Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • F. Cappuzzello
    • 1
    • 2
    Email author
  • C. Agodi
    • 1
  • D. Carbone
    • 1
  • M. Cavallaro
    • 1
  1. 1.INFNLaboratori Nazionali del SudCataniaItaly
  2. 2.Dipartimento di Fisica e AstronomiaUniversità di CataniaCataniaItaly

Personalised recommendations