Advertisement

Transverse-momentum-dependent fragmentation functions in e+e- annihilation

  • Isabella GarziaEmail author
  • Francesca Giordano
Review
Part of the following topical collections:
  1. The 3-D Structure of the Nucleon

Abstract.

Fragmentation functions are non-perturbative functions used to describe the formation of colorless, observable hadrons starting from a colored, partonic initial state. The knowledge of these functions are based on the experimental data, and a good parameterization of the fragmentation processes can shed light on the confining aspect of QCD, and are also a key ingredient in accessing nucleon parton distribution functions in semi-inclusive deep inelastic scattering and proton-proton collisions. In the last decade, a strong interest has risen about the transverse-momentum-dependent (TMD) fragmentation functions, which can be used as tools to probe the 3D-structure of nucleons, and to investigate the Q2 evolution of TMD objects. In this review we will summarize the existing light-quarks fragmentation related measurements from the BaBar, Belle, and BESIII e + e - experiments; in particular, we will focus on the polarized TMD Collins fragmentation functions, emerging from correlations between the transverse polarization of the fragmenting parton and the direction of the resulting hadrons.

References

  1. 1.
    J.C. Collins, D.E. Soper, G.F. Sterman, Adv. Ser. Direct. High Energy Phys. 5, 1 (1988)CrossRefGoogle Scholar
  2. 2.
    R.K. Ellis, W.J. Stirling, B.R. Webber, QCD and Collider Physics (Cambridge Books Online - Cambridge University Press, 1996)Google Scholar
  3. 3.
    J. Collins, Nucl. Phys. B 396, 161 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    A. Bacchetta, U. D’Alesio, M. Diehl, C.A. Miller, Phys. Rev. D 70, 117504 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    K. Abe et al., Phys. Rev. Lett. 96, 232002 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    R. Seidl et al., Phys. Rev. D 78, 032011 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    R. Seidl et al., Phys. Rev. D 86, 039905 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    J.P. Lees et al., Phys. Rev. D 90, 052003 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    M. Ablikim et al., Phys. Rev. Lett. 116, 042001 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    A. Airapetian et al., Phys. Rev. Lett. 94, 012002 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    A. Airapetian et al., Phys. Lett. B 693, 11 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    C. Adolph et al.., Phys. Lett. B 744, 250 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    M.G. Alekseev et al., Phys. Lett. B 692, 240 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    M. Alekseev et al., Phys. Lett. B 673, 127 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    E.S. Ageev et al., Nucl. Phys. B 765, 31 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    C. Adolph et al., Phys. Lett. B 717, 376 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    B. Aubert et al., Nucl. Instrum. Methods A 729, 615 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    A. Abashian et al., Nucl. Instrum. Methods A 479, 117 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    S. Albino, B. Kniehl, G. Kramer, Nucl. Phys. B 803, 42 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    D. de Florian, R. Sassot, M. Stratmann, Phys. Rev. D 75, 114010 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    D. de Florian, R. Sassot, M. Stratmann, Phys. Rev. D 76, 074033 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    D. de Florian, R. Sassot, M. Epele, R.J. Hernández-Pinto, M. Stratmann, Phys. Rev. D 91, 014035 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    K.A. Olive et al., Chin. Phys. C 38, 090001 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    G. Corcella, I.G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M.H. Seymour, B.R. Webber, JHEP 01, 010 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    T. Sjostrand, Comput. Phys. Commun. 82, 74 (1994)ADSCrossRefGoogle Scholar
  26. 26.
    S. Chun, C. Buchanan, Phys. Rep. 292, 239 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    R. Seuster et al., Phys. Rev. D 73, 032002 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    B. Aubert et al., Phys. Rev. D 75, 012003 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    B. Aubert et al., Phys. Rev. Lett. 99, 062001 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    J.P. Lees et al., Phys. Rev. D 88, 032011 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    E. Farhi, Phys. Rev. Lett. 39, 1587 (1977)ADSCrossRefGoogle Scholar
  32. 32.
    D. Boutigny, The BaBar physics book: Physics at an asymmetric $B$ factory, in Workshop on Physics at an Asymmetric B Factory (BaBar Collaboration Meeting) Pasadena, California, September 22-24, 1997, SLAC-R-0504 report (1998)Google Scholar
  33. 33.
    M. Leitgab et al., Phys. Rev. Lett. 111, 062002 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    http://link.aps.org/supplemental/10.1103/ PhysRevLett.111.062002 (Supplemental Material)
  35. 35.
    S. Kretzer, Phys. Rev. D 62, 054001 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    B. Kniehl, G. Kramer, B. Ptter, Nucl. Phys. B 582, 514 (2000)ADSCrossRefGoogle Scholar
  37. 37.
    S. Albino, B. Kniehl, G. Kramer, Nucl. Phys. B 725, 181 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    M. Hirai, S. Kumano, T.H. Nagai, K. Sudoh, Phys. Rev. D 75, 094009 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    M. Hirai, S. Kumano, T.H. Nagai, M. Oka, K. Sudoh, Global analysis of hadron-production data in $e^+e^-$ annihilation for determining fragmentation functions, in Nuclear Physics Proceedings, 23rd International Conference, INPC 2007, Tokyo, Japan, June 3-8, 2007, arXiv:0709.2457
  40. 40.
    M. Epele, R. Llubaroff, R. Sassot, M. Stratmann, Phys. Rev. D 86, 074028 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    C.A. Aidala, F. Ellinghaus, R. Sassot, J.P. Seele, M. Stratmann, Phys. Rev. D 83, 034002 (2011)ADSCrossRefGoogle Scholar
  42. 42.
  43. 43.
    A. Airapetian et al., Phys. Rev. D 87, 074029 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    C. Adolph et al., Eur. Phys. J. C 73, 2531 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    R.L. Jaffe, Can transversity be measured? in Deep inelastic scattering off polarized targets: Theory meets experiment. Physics with polarized protons at HERA, SPIN`97 Proceedings, Germany, 1997, hep-ph/9710465Google Scholar
  46. 46.
    D. Boer, Nucl. Phys. B 806, 23 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    T. Sjostrand, PYTHIA 5.7 and JETSET 7.4: Physics and manual, hep-ph/9508391 (1995)Google Scholar
  48. 48.
    T. Sjostrand, P. Eden, C. Friberg, L. Lonnblad, G. Miu, S. Mrenna, E. Norrbin, Comput. Phys. Commun. 135, 238 (2001)ADSCrossRefGoogle Scholar
  49. 49.
    Z.B. Kang, A. Prokudin, P. Sun, F. Yuan, Extraction of Quark Transversity Distribution and Collins Fragmentation Functions with QCD Evolution, arXiv:1505.05589 (2015)
  50. 50.
    M. Ablikim et al., Nucl. Instrum. Methods A 614, 345 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    P. Sun, F. Yuan, Phys. Rev. D 88, 034016 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    J.P. Lees et al., Phys. Rev. D 92, 111101 (2015)ADSCrossRefGoogle Scholar
  53. 53.
    A. Bacchetta, L.P. Gamberg, G.R. Goldstein, A. Mukherjee, Phys. Lett. B 659, 234 (2008)ADSCrossRefGoogle Scholar
  54. 54.
    M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia, A. Prokudin, C. Turk, Phys. Rev. D 75, 054032 (2007)ADSCrossRefGoogle Scholar
  55. 55.
    M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia, A. Prokudin, S. Melis, Nucl. Phys. B - Proc. Suppl. 191, 98 (2009) Proceedings of the Ringberg WorkshopNew Trends in \HERA\ADSCrossRefGoogle Scholar
  56. 56.
    M. Anselmino, M. Boglione, U. D’Alesio, S. Melis, F. Murgia et al., Phys. Rev. D 87, 094019 (2013)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.INFN Sezione di FerraraFerraraItaly
  2. 2.University of Illinois at Urbana-ChampaignUrbana-ChampaignUSA

Personalised recommendations