Polarization observables in the \(e^{+}e^{-} \rightarrow \bar{\Lambda}\Lambda\) reaction

Regular Article - Theoretical Physics


Cross-section, vector-polarization, and tensor-polarization distributions are calculated for the reactions \( e^{+}e^{-}\rightarrow\bar{p}p\) and \( e^{+}e^{-}\rightarrow \bar{\Lambda}\Lambda\). Each reaction requires six characteristic functions that are bilinear in the, possibly complex, electromagnetic form factors, denoted \( G_{E}(P^{2})\) and \( G_{M}(P^{2})\), of p and \( \Lambda\). For the hyperon reaction also the joint-decay distributions of \( \Lambda\) and \( \bar{\Lambda}\) are calculated. Their knowledge allows a complete determination of the hyperon electromagnetic form factors, without measuring hyperon spins. We explain how this is done in practice. For some tensor-polarization components our results are in conflict with previously repeatedly published distributions.


  1. 1.
    T. Johansson, in Proceedings of the International School of Physics “Enrico Fermi”, Course CLVIII, Hadron Physics, edited by T. Bressani (SIF, Bologna, IOS Press, Amsterdam, 2005) p. 423Google Scholar
  2. 2.
    A.Z. Dubničkova, S. Dubničk, M.P. Rekalo, Nuovo Cimento A 109, 241 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    G.I. Gakh, E. Tomasi-Gustafsson, Nucl. Phys. A 771, 169 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    N.H. Buttimore, E. Jennings, Eur. Phys. J. A 31, 9 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    H. Czyz, A. Grzelińska, J.H. Kühn, Phys. Rev. D 75, 074026 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    G. Fäldt, Eur. Phys. J. A 51, 74 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    H. Pilkuhn, Relativistic Particle Physics (Springer-Verlag, Berlin, 1979)Google Scholar
  8. 8.
    O.D. Dalkarov, P.A. Khakhulin, A.Yu. Voronin, Nucl. Phys. A 833, 104 (2010)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of physics and astronomyUppsala UniversityUppsalaSweden

Personalised recommendations