Advertisement

New results from isochronous mass measurements of neutron-rich uranium fission fragments with the FRS-ESR-facility at GSI

  • R. Knöbel
  • M. DiwischEmail author
  • H. Geissel
  • Yu. A. Litvinov
  • Z. Patyk
  • W. R. Plaß
  • C. Scheidenberger
  • B. Sun
  • H. Weick
  • F. Bosch
  • D. Boutin
  • L. Chen
  • C. Dimopoulou
  • A. Dolinskii
  • B. Franczak
  • B. Franzke
  • M. Hausmann
  • C. Kozhuharov
  • J. Kurcewicz
  • S. A. Litvinov
  • M. Matoš
  • M. Mazzocco
  • G. Münzenberg
  • S. Nakajima
  • C. Nociforo
  • F. Nolden
  • T. Ohtsubo
  • A. Ozawa
  • J. Stadlmann
  • M. Steck
  • T. Suzuki
  • P. M. Walker
  • M. Winkler
  • T. Yamaguchi
Regular Article - Experimental Physics

Abstract.

Masses of uranium fission fragments have been measured with the FRagment Separator (FRS) combined with the Experimental Storage Ring (ESR) at GSI. A 410-415 MeV/u 238U projectile beam was fast extracted from the synchrotron SIS-18 with an average intensity of 109/spill. The projectiles were focused on a 1g/cm2 beryllium target at the entrance of the FRS to create neutron-rich isotopes via abrasion-fission. The fission fragments were spatially separated with the FRS and injected into the isochronous storage ring ESR for fast mass measurements without applying cooling. The Isochronous Mass Spectrometry (IMS) was performed under two different experimental conditions, with and without B \(\rho\)-tagging at the high-resolution dispersive central focal plane of the FRS. The evaluation has been done for the combined data sets from both experiments with a new method of data analysis. The use of a correlation matrix has provided experimental mass values for 23 different neutron-rich isotopes for the first time and 6 masses with improved values. The new masses were obtained for nuclides in the element range from Se to Ce. The applied analysis has given access even to rare isotopes detected with an intensity of a few atoms per week. The novel data analysis and systematic error determination are described and the results are compared with extrapolations of experimental values and theoretical models.

Keywords

Mass Measurement Storage Ring Exotic Nucleus Reference Masse Magnetic Rigidity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Bohr, B. Mottelson, Nuclear Structure, Vol. I (World Scientific, 1998)Google Scholar
  2. 2.
    F.-K. Thielemann et al., Nucl. Phys. A 751, 301 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    H. Geissel (Editors), Encyclopedia of Nuclear Physics and its Applications (Wiley-VCH, 2013)Google Scholar
  4. 4.
    Y.A. Litvinov, K. Blaum (Editors), 100 years of Mass Spetrometry, Int. J. Mass Spectrom., Vols. 349-350 (Elsevier, 2013) pp. 1--276.Google Scholar
  5. 5.
    T. Kubo et al., Nucl. Instrum. Methods Phys. Res. B 204, (2003)Google Scholar
  6. 6.
    J. Kurcewicz et al., Phys. Lett. B 717, 371 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    P. Möller et al., At. Data Nucl. Data Tables 59, 185 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    R. Knöbel et al., Phys. Lett. B 754, 288 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    J. Dobaczewski et al., Phys. Rev. Lett. 72, 981 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    T. Otsuka et al., Phys. Rev. Lett. 87, (2001)Google Scholar
  11. 11.
    C. Thibault et al., Phys. Rev. C 12, 644 (1975)ADSCrossRefGoogle Scholar
  12. 12.
    A. Ozawa et al., Phys. Rev. Lett. 84, 5493 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    R. Kanungo, Phys. Scr. T 152, 014002 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    K. Blaum, M. Block, Hyperfine Interact. 194, 65 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    B. Franzke, H. Geissel, G. Münzenberg, Mass Spectrom. Rev. 27, 428 (2008)CrossRefGoogle Scholar
  16. 16.
    W.R. Plaß, T. Dickel, C. Scheidenberger, Int. J. Mass Spectrom. 349, 134 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    M. Hausmann et al., Nucl. Instrum. Methods A 446, 569 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    H. Geissel et al., Hyperfine Interact. 173, 49 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    H. Geissel et al., Nucl. Instrum. Methods B 70, 286 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    T. Radon et al., Nucl. Phys. A 677, 75 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    B. Franzke, Nucl. Instrum. Methods B 24/25, 18 (1987)ADSCrossRefGoogle Scholar
  22. 22.
    B. Blasche, B. Franczak, in Proceedings of European Particle Accelerator Conference, Vol. 9 (1992) p. 37Google Scholar
  23. 23.
    B. Franczak, in Europhysics Conference on Computing in Accelerator Design and Operation (Berlin, 1983)Google Scholar
  24. 24.
    B. Sun et al., Nucl. Phys. A 812, 1 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    H. Geissel, Microsc. Microanal. 21, Suppl. S4 (2015) 160Google Scholar
  26. 26.
    J. Trötscher et al., Nucl. Instrum. Methods B 70, 455 (1992)ADSCrossRefGoogle Scholar
  27. 27.
    N. Iwasa, H. Weick, H. Geissel, Nucl. Instrum. Methods B 269, 752 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    M. Diwisch, PhD Thesis, Justus-Liebig-University Giessen (2015)Google Scholar
  29. 29.
  30. 30.
    M. Wang, G. Audi, A. Wapstra, Chin. Phys. C 36, 1603 (2012)CrossRefGoogle Scholar
  31. 31.
    P. Hausladen et al., Int. J. Mass Spectrom. 251, 119 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    J.V. Schelt et al., Phys. Rev. Lett. 111, 061102 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Aboussir et al., At. Data Nucl. Data Tables 61, 127 (1995)ADSCrossRefGoogle Scholar
  34. 34.
    N. Wang, M. Liu, J. Phys. 420, 012057 (2013)Google Scholar
  35. 35.
    S. Goriely, N. Chamel, J. Pearson, Phys. Rev. C 88, 024308 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    J. Duflo, A. Zuker, Phys. Rev. C 52, R23 (1995)ADSCrossRefGoogle Scholar
  37. 37.
    J. Pearson et al., Phys. Lett. B 387, 455 (1996)ADSCrossRefGoogle Scholar
  38. 38.
    M. Diwisch et al., Phys. Scr. T 166, 014058 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    X. Xing et al., Chin. Phys. C 39, 106201 (2015)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • R. Knöbel
    • 1
  • M. Diwisch
    • 2
    Email author
  • H. Geissel
    • 1
    • 2
  • Yu. A. Litvinov
    • 1
  • Z. Patyk
    • 3
  • W. R. Plaß
    • 1
    • 2
  • C. Scheidenberger
    • 1
    • 2
  • B. Sun
    • 4
    • 1
  • H. Weick
    • 1
  • F. Bosch
    • 1
  • D. Boutin
    • 1
  • L. Chen
    • 1
    • 2
  • C. Dimopoulou
    • 1
  • A. Dolinskii
    • 1
  • B. Franczak
    • 1
  • B. Franzke
    • 1
  • M. Hausmann
    • 5
  • C. Kozhuharov
    • 1
  • J. Kurcewicz
    • 1
  • S. A. Litvinov
    • 1
  • M. Matoš
    • 1
  • M. Mazzocco
    • 1
  • G. Münzenberg
    • 1
  • S. Nakajima
    • 6
  • C. Nociforo
    • 1
  • F. Nolden
    • 1
  • T. Ohtsubo
    • 7
  • A. Ozawa
    • 8
  • J. Stadlmann
    • 1
  • M. Steck
    • 1
  • T. Suzuki
    • 6
  • P. M. Walker
    • 9
  • M. Winkler
    • 1
  • T. Yamaguchi
    • 6
  1. 1.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  2. 2.II. Physikalisches InstitutJustus-Liebig-Universität GießenGießenGermany
  3. 3.National Centre for Nuclear Research - NCBJ SwierkWarszawaPoland
  4. 4.School of Physics and Nuclear Energy EngineeringBeihang UniversityBeijingChina
  5. 5.Michigan State UniversityEast LansingUSA
  6. 6.Department of PhysicsSaitama UniversitySaitamaJapan
  7. 7.Department of PhysicsNiigata UniversityNiigataJapan
  8. 8.Institute of PhysicsUniversity of TsukubaIbarakiJapan
  9. 9.Department of PhysicsUniversity of SurreyGuildfordUK

Personalised recommendations