Advertisement

Jacobi no-core shell model for p-shell nuclei

  • S. Liebig
  • U. -G. Meißner
  • A. NoggaEmail author
Regular Article - Theoretical Physics

Abstract.

We introduce an algorithm to obtain coefficients of fractional parentage for light p-shell nuclei. The coefficients enable one to use Jacobi coordinates in no-core shell model calculations separating off the center-of-mass motion. Fully antisymmetrized basis states are given together with recoupling coefficients that allow one to apply two- and three-nucleon operators. As an example, we study the dependence on the harmonic oscillator frequency of 3H, 4He, 6He, 6Li and 7Li and extract their binding and excitation energies. The coefficients will be made openly accessible as HDF5 data files.

Keywords

Excitation Energy Antisymmetrized State Large Model Space Similarity Renormalization Group Exponential Extrapolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W. Glöckle, H. Witała, D. Hüber, H. Kamada, J. Golak, Phys. Rep. 274, 107 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    A. Nogga, H. Kamada, W. Glöckle, Phys. Rev. Lett. 85, 944 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    R. Lazauskas, Phys. Rev. C 91, 041001 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    A. Deltuva, A.C. Fonseca, Phys. Rev. C 76, 021001 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    M. Viviani, A. Kievsky, S. Rosati, Phys. Rev. C 71, 024006 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    N. Barnea, W. Leidemann, G. Orlandini, Phys. Rev. C 81, 064001 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    M.A. Caprio, P. Maris, J.P. Vary, Phys. Rev. C 86, 034312 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    B.R. Barrett, P. Navrátil, J.P. Vary, Prog. Part. Nucl. Phys. 69, 131 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    R. Roth, P. Navrátil, Phys. Rev. Lett. 99, 092501 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    C. Forssén, E. Caurier, P. Navrátil, Phys. Rev. C 79, 021303 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    I. Stetcu, B.R. Barrett, P. Navrátil, J.P. Vary, Phys. Rev. C 71, 044325 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Ulf-G. Meißner, PoS (CD15) 038 (2015)Google Scholar
  13. 13.
    A. Nogga, P. Navrátil, B.R. Barrett, J.P. Vary, Phys. Rev. C 73, 064002 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    P. Navrátil, V.G. Gueorguiev, J.P. Vary, W.E. Ormand, A. Nogga, Phys. Rev. Lett. 99, 042501 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    S. Binder, to be published in Phys. Rev. C, arXiv:1505.07218v1 [nucl-th] (2015)
  16. 16.
    P. Navrátil, G.P. Kamuntavičius, B.R. Barrett, Phys. Rev. C 61, 044001 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    R. Roth, J. Langhammer, A. Calci, S. Binder, P. Navrátil, Phys. Rev. Lett. 107, 072501 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    S. Binder, J. Langhammer, A. Calci, P. Navrátil, R. Roth, Phys. Rev. C 87, 021303 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    E. Epelbaum, H.W. Hammer, U.G. Meißner, Rev. Mod. Phys. 81, 1773 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    R. Machleidt, D.R. Entem, Phys. Rep. 503, 1 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    E. Epelbaum, Phys. Lett. B 639, 456 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    E. Epelbaum, Eur. Phys. J. A 34, 197 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    A. Nogga, E. Epelbaum, J. Golak, H. Kamada, H. Witała, D. Rozpedzik, R. Skibinski, W. Glöckle, EPJ Web of Conferences 3, 05006 (2010) (19th International IUPAP Conference on Few-Body Problems in PhysicsCrossRefGoogle Scholar
  24. 24.
    P. Navrátil, W.E. Ormand, Phys. Rev. Lett. 88, 152502 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    S.K. Bogner, T.T.S. Kuo, A. Schwenk, Phys. Rep. 386, 1 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    S.K. Bogner, R.J. Furnstahl, R.J. Perry, Phys. Rev. C 75, 061001 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    E.D. Jurgenson, P. Navrátil, R.J. Furnstahl, Phys. Rev. Lett. 103, 082501 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    I. Talmi, Helv. Phys. Acta 25, 185 (1952)Google Scholar
  29. 29.
    M. Moshinsky, Nucl. Phys. 13, 104 (1959)MathSciNetCrossRefGoogle Scholar
  30. 30.
    G.P. Kamuntavičius, R.K. Kalinauskas, B.R. Barrett, S. Mickevičius, D. Germanas, Nucl. Phys. A 695, 191 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    G. Racah, Phys. Rev. 63, 367 (1943)ADSCrossRefGoogle Scholar
  32. 32.
    L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, ScaLAPACK Users’ Guide (SIAM, 1997)Google Scholar
  33. 33.
    T. Auckenthaler, H.J. Bungartz, T. Huckle, L. Krämer, B. Lang, P. Willems, J. Comput. Sci. 2, 272 (2011)CrossRefGoogle Scholar
  34. 34.
    The HDF Group, Hierarchical Data Format, version 5, 1997--2016, http://www.hdfgroup.org/HDF5/
  35. 35.
    S. Liebig, PhD Thesis, Bonn University (2013)Google Scholar
  36. 36.
    D.R. Entem, R. Machleidt, Phys. Rev. C 68, 041001 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    G.P. Kamuntavičius, P. Navrátil, B.R. Barrett, G. Sapragonaite, R.K. Kalinauskas, Phys. Rev. C 60, 044304 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995)ADSCrossRefGoogle Scholar
  39. 39.
    E.D. Jurgenson, P. Maris, R.J. Furnstahl, P. Navrátil, W.E. Ormand, J.P. Vary, Phys. Rev. C 87, 054312 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    R.J. Furnstahl, G. Hagen, T. Papenbrock, K.A. Wendt, J. Phys. G 42, 034032 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    G. Audi, M. Wang, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, Chin. Phys. C 36, 1287 (2012)CrossRefGoogle Scholar
  42. 42.
    D.R. Tilley et al., Nucl. Phys. A 708, 3 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    A. Nogga, H. Kamada, W. Glöckle, B.R. Barrett, Phys. Rev. C 65, 054003 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    E.D. Jurgenson, P. Navrátil, R.J. Furnstahl, Phys. Rev. C 83, 034301 (2011)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron PhysicsForschungszentrum JülichJülichGermany
  2. 2.JARA - High Performance ComputingForschungszentrum JülichJülichGermany
  3. 3.Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical PhysicsUniversität BonnBonnGermany

Personalised recommendations