Advertisement

Experimental and analysis methods in radiochemical experiments

  • C. M. CattadoriEmail author
  • L. Pandola
Review
Part of the following topical collections:
  1. Underground nuclear astrophysics and solar neutrinos: Impact on astrophysics, solar and neutrino physics

Abstract.

Radiochemical experiments made the history of neutrino physics by achieving the first observation of solar neutrinos (Cl experiment) and the first detection of the fundamental \( pp\) solar neutrinos component (Ga experiments). They measured along decades the integral \( \nu_{e}\) charged current interaction rate in the exposed target. The basic operation principle is the chemical separation of the few atoms of the new chemical species produced by the neutrino interactions from the rest of the target, and their individual counting in a low-background counter. The smallness of the expected interaction rate (1 event per day in a \( \sim 100\) ton target) poses severe experimental challenges on the chemical and on the counting procedures. The main aspects related to the analysis techniques employed in solar neutrino experiments are reviewed and described, with a special focus given to the event selection and the statistical data treatment.

Keywords

Solar Neutrino Interaction Rate GALLEX Neutrino Source Pulse Shape Discrimination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Davis et al., Phys. Rev. Lett. 20, 1205 (1968)ADSCrossRefGoogle Scholar
  2. 2.
    B. Pontecorvo, Chalk River Lab. PD-205 report (1946)Google Scholar
  3. 3.
    J.N. Bahcall, Phys. Rev. Lett. 12, 300 (1964)ADSCrossRefGoogle Scholar
  4. 4.
    BOREXINO Collaboration, Nature 512, 383 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    A. Serenelli, S. Basu, J. Ferguson, M. Asplund, Astrophys. J. L123, 705 (2009) arXiv:0909.2668 and A. Serenelli, arXiv:0910.3690 (2009)Google Scholar
  6. 6.
    T. Schwetz, M. Tortola, J.W.F. Valle, New J. Phys. 10, 113011 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    B.T. Cleveland et al., Astrophys. J. 496, 505 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    J. Boger et al., Astrophys. J. 537, 1080 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    B.T. Cleveland et al., Nucl. Instrum. Methods 214, 451 (1983)CrossRefGoogle Scholar
  10. 10.
    SAGE Collaboration (A.I. Abdurashitov et al.), Phys. Rev. C. 60, 055801 (1999)CrossRefGoogle Scholar
  11. 11.
    SAGE Collaboration (A.I. Abazov et al.), Phys. Rev. Lett. 67, 3332 (1991)CrossRefGoogle Scholar
  12. 12.
    GALLEX Collaboration (P. Anselmann et al.), Phys. Lett. B 285, 376 (1992)CrossRefGoogle Scholar
  13. 13.
    GNO Collaboration (M. Altmann et al.), Phys. Lett. B 490, 16 (2000)CrossRefGoogle Scholar
  14. 14.
    SAGE Collaboration (J.N. Abdurashitov et al.), Phys. Rev. C 80, 015807 (2009)CrossRefGoogle Scholar
  15. 15.
    D Frekers et al., Phys. Rev. C 91, 034608 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    SAGE Collaboration (J.N. Abdurashitov et al.), Phys. Rev. C. 59, 2246 (1999)CrossRefGoogle Scholar
  17. 17.
    GALLEX Collaboration (P. Anselman et al.), Phys. Lett. B 342, 440 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    GALLEX Collaboration (W. Hampel et al.), Phys. Lett. B 420, 114 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    SAGE Collaboration (J.N. Abdurashitov et al.), Phys. Rev. C 73, 045805 (2006)CrossRefGoogle Scholar
  20. 20.
    Gallex Collaboration (W. Hampel et al.), Phys. Lett. B 436, 158 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    R. Wink et al., Nucl. Instrum. Methods A 329, 541 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    W. Hampel, L.P. Remsberg, Phys. Rev. C 31, 667 (1985)ADSCrossRefGoogle Scholar
  23. 23.
    GALLEX Collaboration (W. Hampel et al.), Phys. Lett. B 447, 127 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    GNO Collaboration (M. Altmann et al.), Phys. Lett. B 616, 174 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    M. Cribier et al., Astropart. Phys. 6, 129 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    F. Kaether et al., Phys. Lett. B 685, 47 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    L. Pandola et al., Nucl. Instrum. Methods A 522, 521 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    J.N. Abdurashitov et al., Astropart. Phys. 25, 349 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    P.A. Sturrock, M.A. Weber, Astroph. J. 565, 1366 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    D.O. Caldwell, P.A. Sturrock, Nucl. Phys. B (Proc. Suppl.) 124, 239 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    L. Pandola, Astropart. Phys. 22, 219 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    J.N. Bahcall, Phys. Rev. C 56, 3391 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    M. Acero, C. Giunti, M. Laveder, Phys. Rev. D 78, 073009 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    G. Bellini et al., JHEP 08, 038 (2013)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.INFNMilanoItaly
  2. 2.INFNLaboratori Nazionali del SudCataniaItaly
  3. 3.INFNGran Sasso Science InstituteL’AquilaItaly

Personalised recommendations