Advertisement

Calibration of the solar neutrino detectors

  • Barbara CaccianigaEmail author
  • Alessandra Carlotta Re
Review
Part of the following topical collections:
  1. Underground nuclear astrophysics and solar neutrinos: Impact on astrophysics, solar and neutrino physics

Abstract.

Calibrations have been crucial for the success of solar neutrino experiments. In this contribution we review the calibration strategies adopted by different solar neutrino experiments. In particular, we will emphasize their common critical aspects and their main differences. In order to do so, we will schematically divide the solar neutrino experiments in two groups: those based on radiochemical techniques, i.e. Homestake, Gallex/GNO, SAGE and those based on real-time techniques i.e. Kamiokande, Super-Kamiokande, SNO, Borexino and KamLAND.

Keywords

Solar Neutrino Neutrino Interaction Calibration Strategy Gallex Solar Neutrino Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C.M. Cattadori, L. Pandola, Experimental and analysis methods in radiochemical experiments, contribution to this Topical IssueGoogle Scholar
  2. 2.
    Y. Koshio, Data analysis in solar neutrinos by water Cherenkov detectors, contribution to this Topical IssueGoogle Scholar
  3. 3.
    G. Testera, Data analysis in solar neutrino liquid scintillator detectors, contribution to this Topical IssueGoogle Scholar
  4. 4.
    A.M. Serenelli, Alive and well: A short review about standard solar models, contribution to this Topical IssueGoogle Scholar
  5. 5.
    M. Maltoni, A.Y. Smirnov, Solar neutrinos and neutrino physics, contribution to this Topical IssueGoogle Scholar
  6. 6.
    B. Cleveland et al., Astrophys. J. 496, 505 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    W. Hampel et al., Phys. Lett. B 420, 114 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    W. Hampel et al., Phys. Lett. B 436, 158 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    J.N. Abdurashitov et al., Phys. Rev. C 59, 2246 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    J.N. Abdurashitov et al., Phys. Rev. C 73, 045805 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    M.R. Dragowsky et al., Nucl. Instrum. Methods A 481, 284 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    N.J. Tagg et al., Nucl. Instrum. Methods A 489, 178 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    A.W.P. Poon et al., Nucl. Instrum. Methods A 452, 115 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    K. Boudjemline et al., Nucl. Instrum. Methods A 620, 171 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    B.A. Moffat et al., Nucl. Instrum. Methods A 554, 255 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    H. Back et al., J. Instrum. 7, 10018 (2012)CrossRefGoogle Scholar
  17. 17.
    B. Caccianiga et al., Nucl. Instrum. Methods A 496, 353 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    S. Fukuda et al., Nucl. Instrum. Methods A 501, 418 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    M. Nakahata et al., Nucl. Instrum. Methods A 421, 113 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    E. Blaufuss et al., Nucl. Instrum. Methods A 458, 636 (2001)ADSGoogle Scholar
  21. 21.
    B.E. Berger et al., J. Instrum. 4, 04017 (2009)CrossRefGoogle Scholar
  22. 22.
    T.I. Banks et al., Nucl. Instrum. Methods A 769, 88 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    A. Gando, arXiv:1405.6190v1 (2014).

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Università degli Studi and INFNSezione di MilanoMilanoItaly

Personalised recommendations