Techniques and methods for the low-energy neutrino detection

  • Gioacchino RanucciEmail author
Part of the following topical collections:
  1. Underground nuclear astrophysics and solar neutrinos: Impact on astrophysics, solar and neutrino physics


Low-energy neutrino physics and astrophysics has been one of the most active field of particle physics research over the past two decades, achieving important and sometimes unexpected results, which have paved the way for a bright future of further exciting studies. The methods, the techniques and the technologies employed for the construction of the many experiments which acted as important players in this area of investigation have been crucial elements to reach the many accumulated physics successes. The topic covered in this review is, thus, the description of the main features of the set of methodologies at the basis of the design, construction and operation of low-energy neutrino detectors.


Radon Solar Neutrino Heavy Water 71Ge Atom Liquid Scintillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    B.T. Cleveland et al., Astrophys. J. 496, 505 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    GALLEX Collaboration (W. Hampel et al.), Phys. Lett. B 447, 127 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    SAGE Collaboration (J.N. Abdurashitov et al.), Phys. Rev. C 80, 015807 (2009)CrossRefGoogle Scholar
  4. 4.
    J. Boger et al., Nucl. Instrum. Methods A 449, 172 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    SNO Collaboration (B. Aharmim), arXiv:1109.0763
  6. 6.
    J. Hosaka et al., Phys. Rev. D 73, 112001 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    J.B. Birks, The theory and Practice of Scintillation Counting (Pergamon Press, 1964) chapts. 3 and 6Google Scholar
  8. 8.
    G.F. Knoll, Radiation Detection and Measurement, 3rd edition (Wiley, New York, 1999)Google Scholar
  9. 9.
    Borexino Collaboration (G. Alimonti et al.), Nucl. Instrum. Methods A 600, 568 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Borexino Collaboration (G. Bellini et al.), Phys. Rev. Lett. 107, 141302 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Borexino Collaboration (G. Bellini et al.), Phys. Rev. D 82, 033006B8 (2010)Google Scholar
  12. 12.
    Borexino Collaboration (G. Bellini et al.), Phys. Lett. B 707, 22 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Borexino Collaboration (G. Bellini et al.), Phys. Rev. Lett. 108, 051302 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Borexino Collaboration (G. Bellini et al.), Nature 512, 383 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    KamLAND Collaboration (S. Abe et al.), Phys. Rev. Lett. 100, 221803 (2008)CrossRefGoogle Scholar
  16. 16.
    Daya Bay Collaboration (F.P. An et al.), Phys. Rev. Lett. 108, 171803 (2012)CrossRefGoogle Scholar
  17. 17.
    RENO Collaboration (J.K. Ahn et al.), Phys. Rev. Lett. 108, 191802 (2012)CrossRefGoogle Scholar
  18. 18.
    DOUBLE CHOOZ Collaboration (S. Abe et al.), Phys. Lett. B 723, 66 (2013)CrossRefGoogle Scholar
  19. 19.
    M. Chen, Nucl. Phys. B Proc. Suppl. 154, 65 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Yu-Feng Li, Jun Cao, Yifang Wang, Liang Zhan, Phys. Rev. D 88, 013008 (2013)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.INFNMilanoItaly

Personalised recommendations