Advertisement

Helium burning and neutron sources in the stars

  • M. Aliotta
  • M. Junker
  • P. PratiEmail author
  • O. Straniero
  • F. Strieder
Regular Article - Experimental Physics
Part of the following topical collections:
  1. Underground nuclear astrophysics and solar neutrinos: Impact on astrophysics, solar and neutrino physics

Abstract.

Helium burning represents an important stage of stellar evolution as it contributes to the synthesis of key elements such as carbon, through the triple-\( \alpha\) process, and oxygen, through the 12C(\( \alpha\),\( \gamma\))16O reaction. It is the ratio of carbon to oxygen at the end of the helium burning stage that governs the following phases of stellar evolution leading to different scenarios depending on the initial stellar mass. In addition, helium burning in Asymptotic Giant Branch stars, provides the two main sources of neutrons, namely the 13C(\( \alpha\), n)16O and the 22Ne(\( \alpha\), n)25Mg, for the synthesis of about half of all elements heavier than iron through the s-process. Given the importance of these reactions, much experimental work has been devoted to the study of their reaction rates over the last few decades. However, large uncertainties still remain at the energies of astrophysical interest which greatly limit the accuracy of stellar models predictions. Here, we review the current status on the latest experimental efforts and show how measurements of these important reaction cross sections can be significantly improved at next-generation deep underground laboratories.

Keywords

White Dwarf Stellar Evolution Stellar Model Asymptotic Giant Branch Nuclear Astrophysics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Hoyle, D.N.F. Dumbar, W.A. Wensel, W. Whaling, Phys. Rev. 92, 649 (1953)ADSCrossRefGoogle Scholar
  2. 2.
    P.G. Prada Moroni, O. Straniero, Astroph. J. 581, 585 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    A. Burrows, Rev. Mod. Phys. 85, 245 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    G. Imbriani et al., Astroph. J. 558, 903 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    I. Domínguez, P. Höflich, O. Straniero, Astroph. J. 557, 279 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    C. Angulo et al., Nucl. Phys. A 656, 3 (1999)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    R. Kunz, M. Jaeger, A. Mayer, J.W. Hammer et al., Phys. Rev. Lett. 86, 3244 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    O. Straniero, I. Domínguez, G. Imbriani, L. Piersanti, Astroph. J. 583, 878 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    O. Straniero, R. Gallino, S. Cristallo, Nucl. Phys. A 777, 311 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    R. Gallino et al., Astroph. J. 497, 388 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    F. Kaeppeler et al., Astroph. J. 437, 396 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    L.R. Yungelson, White Dwarfs: Cosmological and Galactic Probes, edited by E.M. Sion, S. Vennes, H.L. Shipman, in Astrophys. Space Sci. Lib., Vol. 332 (Springer, Berlin, 2005) pp. 163--173Google Scholar
  13. 13.
    P. Hoeflich, A. Khokhlov, Astroph. J. 457, 500 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    P.G. Prada Moroni, O. Straniero, Astron. Astrophys. 466, 1043 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    J.D. Larson, R.H. Spears, Nucl. Phys. A 56, 497 (1964)CrossRefGoogle Scholar
  16. 16.
    P. Dyer, C.A. Barnes, Nucl. Phys. A 233, 495 (1974)ADSCrossRefGoogle Scholar
  17. 17.
    K.U. Kettner, H.W. Becker, L. Buchmann, J. Görres, et al., Z. Phys. A 308, 73 (1982)ADSCrossRefGoogle Scholar
  18. 18.
    A. Redder, H.W. Becker, C. Rolfs, H.P. Trautvetter et al., Nucl. Phys. A 462, 385 (1987)ADSCrossRefGoogle Scholar
  19. 19.
    R.M. Kremer, C.A. Barnes, K.H. Chang, H.C. Evans, B.W. Filippone, Phys. Rev. Lett. 60, 1475 (1988)ADSCrossRefGoogle Scholar
  20. 20.
    J.M.L. Ouellet, M.N. Butler, H.C. Evans, H.W. Lee et al., Phys. Rev. C 54, 1982 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    G. Roters, C. Rolfs, F. Strieder, H.P. Trautvetter, Eur. Phys. J. A 6, 451 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    L. Gialanella, D. Rogalla, F. Strieder, S. Theis et al., Eur. Phys. J. A 11, 357 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    M. Fey, PhD thesis, Universität Stuttgart, Germany (2004)Google Scholar
  24. 24.
    M. Assunção, M. Fey, A. Lefebvre-Schuhl, J. Kiener et al., Phys. Rev. C 73, 055801 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    C. Matei, L. Buchmann, W.R. Hannes, D.A. Hutcheon et al., Phys. Rev. Lett. 97, 242503 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    H. Makii et al., Phys. Rev. C 80, 065802 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    D. Schürmann et al., Phys. Lett. B 703, 557 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    R. Plag et al., Phys. Rev. C 86, 015805 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    M. D’Agostino Bruno et al., Nuovo Cimento A 27, 1 (1975)ADSCrossRefGoogle Scholar
  30. 30.
    R. Plaga et al., Nucl. Phys. A 465, 291 (1987)ADSCrossRefGoogle Scholar
  31. 31.
    P. Tischhauser, R.E. Azuma, L. Buchmann, R. Detwiler et al., Phys. Rev. Lett. 88, 072501 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    P. Tischhauser, A. Couture, R. Detwiler, J. Görres et al., Phys. Rev. C 79, 055803 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    Z. Zhao et al., Phys. Rev. Lett. 70, 2066 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    R.E. Azuma, L. Buchmann, F.C. Barker, C.A. Barnes et al., Phys. Rev. C 50, 1194 (1994)ADSCrossRefGoogle Scholar
  35. 35.
    R.H. France, III, E.L. Wilds, J.E. McDonald, M. Gai, Phys. Rev. C 75, 065802 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    X.D. Tang, K.E. Rehm, I. Ahmad, C.R. Brune et al., Phys. Rev. Lett. 99, 052502 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    C.R. Brune, W.H. Geist, R.W. Kavanagh, K.D. Veal, Phys. Rev. Lett. 83, 4025 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    S. Adhikari, C. Basu, Phys. Lett. B 704, 308 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    M.L. Avila et al., Phys. Rev. Lett. 114, 071101 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    D. Schürmann, A. Di Leva, L. Gialanella, D. Rogalla et al., Eur. Phys. J. A 26, 301 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    C.R. Brune, Phys. Rev. C 66, 044611 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    A.M. Lane, R.G. Thomas, Rev. Mod. Phys. 30, 257 (1958)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    F.C. Barker, T. Kajino, Aust. J. Phys. 44, 369 (1991)ADSCrossRefGoogle Scholar
  44. 44.
    D. Schrmann, L. Gialanella, R. Kunz, F. Strieder, Phys. Lett. B 711, 35 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    M. Gai, Phys. Rev. C 88, 062801 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    O. Straniero, S. Cristallo, L. Piersanti, Astropyis. J. 785, 77 (2014) arXiv:1403.0819 [astro-ph.GA]ADSCrossRefGoogle Scholar
  47. 47.
    M. Heil et al., Phys. Rev. C 78, 025803 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    O. Straniero, R. Gallino, S. Cristallo, Nucl. Phys. A 777, 311 (2006) Special Issue on Nuclear AstrophysicsADSCrossRefGoogle Scholar
  49. 49.
    S. Cristallo et al., Astrophys. J. 696, 797 (2009)ADSCrossRefGoogle Scholar
  50. 50.
    H.W. Drotleff et al., Astrophys. J. 414, 735 (1993)ADSCrossRefGoogle Scholar
  51. 51.
    C.R. Brune, I. Licot, R.W. Kavanagh, Phys. Rev. C 48, 3119 (1993)ADSCrossRefGoogle Scholar
  52. 52.
    C.N. Davids, Nucl. Phys. A 110, 619 (1968)ADSCrossRefGoogle Scholar
  53. 53.
    S. Harissopulos et al., Phys. Rev. C 72, 062801 (2005)ADSCrossRefGoogle Scholar
  54. 54.
    P. Descouvemont, Phys. Rev. C 36, 2206 (1987)ADSCrossRefGoogle Scholar
  55. 55.
    B. Guo et al., Astrophys. J. 756, 193 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    S. Kubono et al., Phys. Rev. Lett. 90, 062501 (2003)ADSCrossRefGoogle Scholar
  57. 57.
    N. Keeley, K. Kemper, D.T. Khoa, Nucl. Phys. A 726, 159 (2003)ADSCrossRefGoogle Scholar
  58. 58.
    M.G. Pellegriti et al., Phys. Rev. C 77, 042801 (2008)ADSCrossRefGoogle Scholar
  59. 59.
    E.D. Johnson et al., Phys. Rev. Lett. 97, 192701 (2006)ADSCrossRefGoogle Scholar
  60. 60.
    M.L. Avila et al., Phys. Rev. C 91, 048801 (2015)ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    M. La Cognata et al., Phys. Rev. Lett. 109, 232701 (2012)ADSCrossRefGoogle Scholar
  62. 62.
    C. Ugalde, PoS (NIC X), 038 (2008)Google Scholar
  63. 63.
    M. Jaeger et al., Phys. Rev. Lett. 87, 202501 (2001)ADSCrossRefGoogle Scholar
  64. 64.
    R. Longland, C. Iliadis, A.I. Karakas, Phys. Rev. C 85, 065809 (2012)ADSCrossRefGoogle Scholar
  65. 65.
    U. Giesen et al., Nucl. Phys. A 561, 95 (1993)ADSCrossRefGoogle Scholar
  66. 66.
    R. Longland et al., Phys. Rev. C 80, 055803 (2009)ADSCrossRefGoogle Scholar
  67. 67.
    C.E. Porter, R.G. Thomas, Phys. Rev. 104, 483 (1956)ADSCrossRefGoogle Scholar
  68. 68.
    M. Jaeger et al., Phys. Rev. Lett. 87, 202501 (2001)ADSCrossRefGoogle Scholar
  69. 69.
    C. Rolfs, W. Rodney, Cauldrons in the Cosmos (University of Chicago Press, Chicago, 1988)Google Scholar
  70. 70.
    H. Costantini et al., Rep. Prog. Phys. 72, 086301 (2009)ADSCrossRefGoogle Scholar
  71. 71.
    R. Longland, C. Iliadis, A. Champagne, C. Fox, J. Newton, Nucl. Instrum. Methods Phys. Res. 566, 452 (2006)ADSCrossRefGoogle Scholar
  72. 72.
    A. Best et al., Eur. Phys. J. A 52, 72 (2016) contribution to this Topical IssueCrossRefGoogle Scholar
  73. 73.
    A. Guglielmetti, Phys. Dark Univ. 4, 10 (2014)CrossRefGoogle Scholar
  74. 74.
    Z. Debicki et al., Nucl. Phys. B Proc. Suppl. 196, 429 (2009)ADSCrossRefGoogle Scholar
  75. 75.
    E. Bellotti, Report INFN/TC-85/19 Istituto Nazionale Fisica Nucleare (1985).Google Scholar
  76. 76.
    A. Rindi, F. Celani, M. Lindozzi, S. Miozzi, Nucl. Instrum. Methods Phys. Res. A 272, 871 (1988)ADSCrossRefGoogle Scholar
  77. 77.
    P. Belli et al., Nuovo Cimento A 101, 959 (1989)ADSCrossRefGoogle Scholar
  78. 78.
    R. Aleksan et al., Nucl. Instrum. Methods Phys. Res. A 274, 203 (1989)ADSCrossRefGoogle Scholar
  79. 79.
    M. Cribier et al., Astropart. Phys. 4, 23 (1995)ADSCrossRefGoogle Scholar
  80. 80.
    F. Arneodo et al., Nuovo Cimento A 112, 819 (1999)ADSGoogle Scholar
  81. 81.
    A. Best et al., Nucl. Instrum. Methods A 812, 1 (2016)ADSCrossRefGoogle Scholar
  82. 82.
    S. Falahat, PhD thesis, University of Mainz (2010)Google Scholar
  83. 83.
    M. Heil et al., Phys. Rev. C 78, 025803 (2008)ADSCrossRefGoogle Scholar
  84. 84.
  85. 85.
  86. 86.
    http://www.crystals.saint-gobain.com/ uploadedFiles/SG-Crystals/Documents/SGC% 20BC501_501A_519%20Data%20Sheet.pdf
  87. 87.
    http://www.crystals.saint-gobain.com/ uploadedFiles/SG-Crystals/Documents/SGC% 20BC523A%20Data%20Sheet.pdf
  88. 88.
    G. Ciani, Rivelazione di neutroni in esperimenti di astrofisica nucleare: studio e caratterizzazione di scintillatori liquidi organici, Master’s thesis, Università di Bari (2015)Google Scholar
  89. 89.
    W.-P. Liu, Z.-H. Li, Y.-B. Wang, B. Guo, Y.-P. Shen (Editors), Proceedings of The 13th International Symposium on Origin of Matter and Evolution of Galaxies (OMEG2015) Beijing, China, June 24-27, 2015, in EPJ Web of Conferences, Vol. 109 (2016)Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • M. Aliotta
    • 1
  • M. Junker
    • 2
  • P. Prati
    • 3
    Email author
  • O. Straniero
    • 4
  • F. Strieder
    • 5
  1. 1.SUPA, School of Physics and AstronomyUniversity of EdinburghEdinburghUK
  2. 2.Laboratori Nazionali del Gran Sasso (LNGS)AssergiItaly
  3. 3.Sezione di GenovaUniversità degli Studi di Genova and INFNGenovaItaly
  4. 4.Osservatorio Astronomico di ColluraniaTeramoItaly
  5. 5.South Dakota School of Mines and TechnologyRapid CityUSA

Personalised recommendations