Advertisement

Underground nuclear astrophysics: Why and how

  • A. Best
  • A. CaciolliEmail author
  • Zs. Fülöp
  • Gy. Gyürky
  • M. Laubenstein
  • E. Napolitani
  • V. Rigato
  • V. Roca
  • T. Szücs
Review
Part of the following topical collections:
  1. Underground nuclear astrophysics and solar neutrinos: Impact on astrophysics, solar and neutrino physics

Abstract.

The goal of nuclear astrophysics is to measure cross-sections of nuclear physics reactions of interest in astrophysics. At stars temperatures, these cross-sections are very low due to the suppression of the Coulomb barrier. Cosmic-ray-induced background can seriously limit the determination of reaction cross-sections at energies relevant to astrophysical processes and experimental setups should be arranged in order to improve the signal-to-noise ratio. Placing experiments in underground sites, however, reduces this background opening the way towards ultra low cross-section determination. LUNA (Laboratory for Underground Nuclear Astrophysics) was pioneer in this sense. Two accelerators were mounted at the INFN National Laboratories of Gran Sasso (LNGS) allowing to study nuclear reactions close to stellar energies. A summary of the relevant technology used, including accelerators, target production and characterisation, and background treatment is given.

Keywords

Solid Target Nuclear Astrophysics Beam Heating Nuclear Reaction Analysis Neutron Background 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C.E. Rolfs, W.S. Rodney, Cauldrons in the Cosmos (The University of Chicago Press, 1988)Google Scholar
  2. 2.
    C. Iliadis, Nuclear Physics of Stars (Wiley-VCH, New York, 2007)Google Scholar
  3. 3.
    D. Bemmerer et al., Eur. Phys. J. A 24, 313 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    R. Bonetti et al., Phys. Rev. Lett. 82, 5205 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    C. Casella et al., Nucl. Phys. A 706, 203 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    L. Gialanella et al., Rev. Mex. Fis. 43, 169 (1997)Google Scholar
  7. 7.
    D.A. Scott et al., Phys. Rev. Lett. 109, 208001 (2012)CrossRefGoogle Scholar
  8. 8.
    B. Limata et al., Phys. Rev. C 82, 015801 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    M. Marta et al., Phys. Rev. C 78, 022802 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    M. Marta et al., Phys. Rev. C 83, 045804 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    E.G. Adelberger et al., Rev. Mod. Phys. 70, 1265 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    E.G. Adelberger et al., Rev. Mod. Phys. 83, 195 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    U. Greife et al., Nucl. Instrum. Methods A 350, 327 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    A. Formicola et al., Nucl. Instrum. Methods A 507, 609 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    C. Broggini et al., Annu. Rev. Nucl. Part. Sci. 60, 53 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    H. Costantini et al., Rep. Prog. Phys. 72, 086301 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    T. Szücs et al., Eur. Phys. J. A 44, 513 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    F. Cavanna et al., Eur. Phys. J. A 50, 179 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    A. Caciolli et al., Eur. Phys. J. A 39, 179 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    C. Bruno et al., Eur. Phys. J. A 51, 94 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    F. Käppeler et al., Rep. Prog. Part. Phys. 43, 419 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    M. Aliotta, Helium burning and neutron sources in the stars, contribution to this Topical IssueGoogle Scholar
  23. 23.
    S. Falahat et al., Nucl. Instrum. Methods A 700, 53 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Jaeger et al., Phys. Rev. Lett. 87, 202501 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    A. Rindi et al., Nucl. Instrum. Methods A 272, 871 (1988)ADSCrossRefGoogle Scholar
  26. 26.
    P. Belli et al., Nuovo Cimento A 101, 959 (1989)ADSCrossRefGoogle Scholar
  27. 27.
    Z. Debicki et al., Nucl. Phys. B - Proc. Suppl. 196, 429 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    A. Best et al., Nucl. Instrum. Methods A 812, 1 (2016) DOI:10.1016/j.nima.2015.12.034 ADSCrossRefGoogle Scholar
  29. 29.
    M. Anders et al., Eur. Phys. J. A 49, 28 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    D. Bemmerer et al., J. Phys. G: Nucl. Part. Phys. 36, 045202 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    F. Strieder et al., Phys. Lett. B 707, 60 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    A. Formicola et al., Phys. Lett. B 591, 61 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    D. Scott et al., Phys. Rev. Lett. 109, 202501 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    C. Bordeaunu et al., Nucl. Instrum. Methods A 693, 220 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    A. Kontos et al., Nucl. Instrum. Methods A 664, 272 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    H. Costantini et al., Eur. Phys. J. A 27, s01, 177 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    D. Bemmerer et al., Phys. Rev. Lett. 97, 122502 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    M. Anders et al., Phys. Rev. Lett. 113, 042501 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    F. Cavanna et al., Phys. Rev. Lett. 115, 252501 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    M. Marta et al., Nucl. Instrum. Methods A 569, 727 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    C. Casella et al., Nucl. Instrum. Methods 489, 160 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    J. Görres, K.U. Kettner, H. Krawinkel, C. Rolfs, Nucl. Instrum. Methods 177, 295 (1980)ADSCrossRefGoogle Scholar
  43. 43.
    A. Di Leva et al., Phys. Rev. C 89, 015803 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    A. Caciolli et al., Astron. Astrophys. 533, A66 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    A. Caciolli et al., Eur. Phys. J. A 48, 1 (2012)CrossRefGoogle Scholar
  46. 46.
    M. Marta et al., Phys. Rev. 81, 055807 (2010)ADSGoogle Scholar
  47. 47.
    A. Bergmaier, G. Dollinger, C.M. Frey, Nucl. Instrum. Methods B 638, 136 (1998)Google Scholar
  48. 48.
    F.G.R.A. Benninghoven, H.W. Werner, Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications, and Trends (Wiley, New York, 1987)Google Scholar
  49. 49.
    F. Strieder, Bulletin of the American Physical Society - 2015 Fall Meeting of the APS Division of Nuclear Physics, Vol. 60 (2015)Google Scholar
  50. 50.
    Wu Yu-Cheng et al., Chin. Phys. C 37, 086001 (2013)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • A. Best
    • 1
  • A. Caciolli
    • 2
    • 3
    Email author
  • Zs. Fülöp
    • 4
  • Gy. Gyürky
    • 4
  • M. Laubenstein
    • 1
  • E. Napolitani
    • 2
    • 5
  • V. Rigato
    • 5
  • V. Roca
    • 6
  • T. Szücs
    • 7
  1. 1.INFNLaboratori Nazionali del Gran SassoAssergi (AQ)Italy
  2. 2.Dipartimento di Fisica e AstronomiaUniversità di PadovaPadovaItaly
  3. 3.INFNSezione di PadovaPadovaItaly
  4. 4.Institute for Nuclear Research (MTA Atomki)DebrecenHungary
  5. 5.INFNLaboratori Nazionali di LegnaroLegnaroItaly
  6. 6.Dipartimento di FisicaUniversità di Napoli “Federico II”, and INFNNapoliItaly
  7. 7.Helmholtz-Zentrum Dresden - Rossendorf (HZDR)DresdenGermany

Personalised recommendations