Pulse shape analysis and position determination in segmented HPGe detectors: The AGATA detector library

Special Article - Tools for Experiment and Theory

Abstract.

The AGATA Detector Library (ADL) was developed for the calculation of signals from highly segmented large volume high-purity germanium (HPGe) detectors. ADL basis sets comprise a huge amount of calculated position-dependent detector pulse shapes. A basis set is needed for Pulse Shape Analysis (PSA). By means of PSA the interaction position of a \( \gamma\)-ray inside the active detector volume is determined. Theoretical concepts of the calculations are introduced and cover the relevant aspects of signal formation in HPGe. The approximations and the realization of the computer code with its input parameters are explained in detail. ADL is a versatile and modular computer code; new detectors can be implemented in this library. Measured position resolutions of the AGATA detectors based on ADL are discussed.

References

  1. 1.
    J. Eberth, J. Simpson, Prog. Part. Nucl. Phys. 60, 283 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    R. Venturelli, D. Bazzacco, Adaptive Grid Search as Pulse Shape Analysis Algorithm for $\gamma$-Tracking and Results, LNL Annual Report (2004)Google Scholar
  3. 3.
    Th. Kröll, D. Bazzacco, Nucl. Instrum. Methods A 565, 691 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    A. Olariu et al., Nucl. Sci. IEEE Trans. 53, 1028 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    M. Schlarb, R. Gernhäuser, S. Klupp, R. Krücken, Eur. Phys. J. A 47, 131 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    S. Akkoyun et al., Nucl. Instrum. Methods A 668, 26 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    S. Paschalis et al., Nucl. Instrum. Methods A 709, 44 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    L. Nelson et al., Nucl. Instrum. Methods A 573, 153 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    A.J. Boston et al., Nucl. Instrum. Methods A 604, 48 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    T.M.H. Ha et al., Nucl. Instrum. Methods A 697, 123 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    C. Domingo-Pardo et al., Nucl. Instrum. Methods A 643, 79 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    N. Goel et al., Nucl. Instrum. Methods A 652, 591 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    F.C.L. Crespi et al., Nucl. Instrum. Methods A 593, 440 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    P. Désesquelles, Nucl. Instrum. Methods A 654, 324 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    B. Bruyneel, P. Reiter, G. Pascovici, Nucl. Instrum. Methods A 569, 774 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    A. Wiens, H. Hess, B. Birkenbach, B. Bruyneel, J. Eberth, D. Lersch, G. Pascovici, P. Reiter, H.-G. Thomas, Nucl. Instrum. Methods A 618, 223 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    J. van der Marel, B. Cederwall, Nucl. Instrum. Methods A 437, 538 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    G.J. Schmid et al., Nucl. Instrum. Methods A 430, 6 (1999)Google Scholar
  19. 19.
    E. Farnea, F. Recchia, D. Bazzacco, Th. Kröll, Zs. Podolyak, B. Quintana, A. Gadea, Nucl. Instrum. Methods A 621, 331 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    P.-A. Söderström et al., Nucl. Instrum. Methods A 638, 96 (2011)ADSCrossRefGoogle Scholar
  21. 21.
  22. 22.
    I. Mateu, P. Medina, J.P. Roques, E. Jourdain, Nucl. Instrum. Methods A 735, 574 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    M. Schlarb, R. Gernhäuser, S. Klupp, R. Krücken, Eur. Phys. J. A 47, 132 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    G. Lutz, Semiconductor Radiation Detectors, first edition (Springer, Berlin-Heidelberg-New York, 1999)Google Scholar
  25. 25.
  26. 26.
  27. 27.
    National Institute of Standards and Technology, Stopping-power and range tables for electrons, protons, and helium ions (2009)Google Scholar
  28. 28.
    G. Pausch, W. Bohne, D. Hilscher, Nucl. Instrum. Methods A 337, 573 (1994)ADSCrossRefGoogle Scholar
  29. 29.
    Glenn F. Knoll, Radiation Detection and Measurement, third edition (John Wiley & Sons, 2000)Google Scholar
  30. 30.
    C. Jacoboni, F. Nava, C. Canali, G. Ottaviani, Phys. Rev. B 24, 1014 (1981)ADSCrossRefGoogle Scholar
  31. 31.
    S. Aydin, Effective size of segmentation lines of an AGATA crystal, LNL Annual Report (2007)Google Scholar
  32. 32.
    E.L. Hull et al., Nucl. Instrum. Methods A 364, 488 (1995)ADSGoogle Scholar
  33. 33.
    P. Mullowney et al., Nucl. Instrum. Methods A 662, 33 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    B. Bruyneel, Determination of the Crystal Orientation of the AGATA Detectors, LNL Annual Report (2010)Google Scholar
  35. 35.
    L. Mihailescu, W. Gast, R.M. Lieder, H. Brands, H. Jäger, Nucl. Instrum. Methods A 447, 350 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    B. Bruyneel, P. Reiter, G. Pascovici, Nucl. Instrum. Methods A 569, 764 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    W. Blum, W. Riegler, W. Rolandi, Particle Detection with Drift Chambers, first edition (Springer, Berlin, Heidelberg, 2008)Google Scholar
  38. 38.
    E. Gatti, G. Padovini, V. Radeka, Nucl. Instrum. Methods 193, 651 (1982)ADSCrossRefGoogle Scholar
  39. 39.
    W. Riegler, Nucl. Instrum. Methods A 535, 287 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    B. Bruyneel, P. Reiter, A. Wiens, J. Eberth, H. Hess, G. Pascovici, N. Warr, D. Weisshaar, Nucl. Instrum. Methods A 599, 196 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    B. Bruyneel et al., Nucl. Instrum. Methods A 608, 99 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    B. Bruyneel, Pulse shape analysis with the AGATA demonstrator (Germanium Workshop Berkeley, 2010)Google Scholar
  43. 43.
    B. Bruyneel, PhD thesis, Institut für Kernphysik der Universität zu Köln (2006)Google Scholar
  44. 44.
  45. 45.
    W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, second edition (Cambridge University Press, 1992)Google Scholar
  46. 46.
  47. 47.
    B. Birkenbach, B. Bruyneel, G. Pascovici, J. Eberth, H. Hess, D. Lersch, P. Reiter, A. Wiens, Nucl. Instrum. Methods A 640, 176 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    B. Bruyneel, B. Birkenbach, P. Reiter, Nucl. Instrum. Methods A 641, 92 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    B. Birkenbach, Raumladungsverteilungen in hochsegmentierten HPGe-Detektoren, Diplomarbeit (2009)Google Scholar
  50. 50.
    B. Birkenbach, Determination of the Space Charge Distributions in the AGATA Detectors, LNL Annual Report 2010 (2010) p. 68Google Scholar
  51. 51.
    B. Bruyneel et al., Eur. Phys. J. A 49, 61 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    T. Beck, PhD thesis, Fachbereich Physik Johann Wolfgang Göthe-Universität in Frankfurt am Main (2007)Google Scholar
  53. 53.
    F. Recchia et al., Nucl. Instrum. Methods A 604, 555 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    F. Recchia et al., Nucl. Instrum. Methods A 604, 60 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    S. Klupp, Master’s thesis, Technical University Munich (2011)Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institut für KernphysikUniversität zu KölnKölnGermany
  2. 2.CEA SaclayService de Physique NucleaireGif-sur-YvetteFrance

Personalised recommendations