Advertisement

Inhomogeneous chiral symmetry breaking in dense neutron-star matter

  • Michael BuballaEmail author
  • Stefano Carignano
Review
Part of the following topical collections:
  1. Exotic Matter in Neutron Stars

Abstract.

An increasing number of model results suggests that chiral symmetry is broken inhomogeneously in a certain window at intermediate densities in the QCD phase diagram. This could have significant effects on the properties of compact stars, possibly leading to new astrophysical signatures. In this contribution we discuss this idea by reviewing recent results on inhomogeneous chiral symmetry breaking under an astrophysics-oriented perspective. After introducing two commonly studied spatial modulations of the chiral condensate, the chiral density wave and the real kink crystal, we focus on their properties and their effect on the equation of state of quark matter. We also describe how these crystalline phases are affected by different elements which are required for a realistic description of a compact star, such as charge neutrality, the presence of magnetic fields, vector interactions and the interplay with color superconductivity. Finally, we discuss possible signatures of inhomogeneous chiral symmetry breaking in the core of compact stars, considering the cases of mass-radius relations and neutrino emissivity explicitly.

Keywords

Quark Matter Strange Quark Compact Star Chiral Condensate Neutrino Emissivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D.D. Ivanenko, D.F. Kurdgelaidze, Astrophysics 1, 251 (1965) (Astrofiz. 1ADSCrossRefGoogle Scholar
  2. 2.
    N. Itoh, Prog. Theor. Phys. 44, 291 (1970)ADSCrossRefGoogle Scholar
  3. 3.
    P. Demorest, T. Pennucci, S. Ransom, M. Roberts, J. Hessels, Nature 467, 1081 (2010) arXiv:1010.5788 ADSCrossRefGoogle Scholar
  4. 4.
    J. Antoniadis et al., Science 340, 6131 (2013) arXiv:1304.6875 ADSCrossRefGoogle Scholar
  5. 5.
    M. Alford, D. Blaschke, A. Drago, T. Klähn, G. Pagliara, J. Schaffner-Bielich, Nature 445, E7 (2007) arXiv:astro-ph/0606524 ADSCrossRefGoogle Scholar
  6. 6.
    M.G. Alford, S. Han, arXiv:1508.01261
  7. 7.
    M. Buballa et al., J. Phys. G 41, 123001 (2014) arXiv:1402.6911 ADSCrossRefGoogle Scholar
  8. 8.
    T. Kojo, Y. Hidaka, L. McLerran, R. Pisarski, Nucl. Phys. A 843, 37 (2010) arXiv:0912.3800 ADSCrossRefGoogle Scholar
  9. 9.
    D. Nickel, Phys. Rev. D 80, 074025 (2009) arXiv:0906.5295 ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    D. Müller, M. Buballa, J. Wambach, Phys. Lett. B 727, 240 (2013) arXiv:1308.4303 ADSCrossRefGoogle Scholar
  11. 11.
    S. Carignano, M. Buballa, Acta Phys. Pol. Suppl. 5, 641 (2012) arXiv:1111.4400 CrossRefGoogle Scholar
  12. 12.
    R. Anglani, R. Casalbuoni, M. Ciminale, N. Ippolito, R. Gatto et al., Rev. Mod. Phys. 86, 509 (2014) arXiv:1302.4264 ADSCrossRefGoogle Scholar
  13. 13.
    M. Buballa, S. Carignano, Prog. Part. Nucl. Phys. 81, 39 (2015) arXiv:1406.1367 ADSCrossRefGoogle Scholar
  14. 14.
    W. Broniowski, Acta Phys. Pol. Supp. 5, 631 (2012) arXiv:1110.4063 CrossRefGoogle Scholar
  15. 15.
    Y. Nambu, G. Jona-Lasinio, Phys. Rev. 124, 246 (1961)ADSCrossRefGoogle Scholar
  16. 16.
    H. Abuki, D. Ishibashi, K. Suzuki, Phys. Rev. D 85, 074002 (2012) arXiv:1109.1615 ADSCrossRefGoogle Scholar
  17. 17.
    S. Carignano, M. Buballa, Phys. Rev. D 86, 074018 (2012) arXiv:1203.5343 ADSCrossRefGoogle Scholar
  18. 18.
    W. Broniowski, A. Kotlorz, M. Kutschera, Acta Phys. Pol. B 22, 145 (1991)Google Scholar
  19. 19.
    E. Nakano, T. Tatsumi, Phys. Rev. D 71, 114006 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    O. Schnetz, M. Thies, K. Urlichs, Ann. Phys. 314, 425 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    S. Carignano, D. Nickel, M. Buballa, Phys. Rev. D 82, 054009 (2010) arXiv:1007.1397 ADSCrossRefGoogle Scholar
  22. 22.
    M. Buballa, S. Carignano, Phys. Rev. D 87, 054004 (2013) arXiv:1210.7155 ADSCrossRefGoogle Scholar
  23. 23.
    I. Frolov, V. Zhukovsky, K. Klimenko, Phys. Rev. D 82, 076002 (2010) arXiv:1007.2984 ADSCrossRefGoogle Scholar
  24. 24.
    D. Nickel, Phys. Rev. Lett. 103, 072301 (2009) arXiv:0902.1778 ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    H. Abuki, Phys. Rev. D 87, 094006 (2013) arXiv:1304.1904 ADSCrossRefGoogle Scholar
  26. 26.
    H. Abuki, Phys. Lett. B 728, 427 (2014) arXiv:1307.8173 ADSCrossRefGoogle Scholar
  27. 27.
    D. Nowakowski, M. Buballa, S. Carignano, J. Wambach, arXiv:1506.04260
  28. 28.
    M. Asakawa, K. Yazaki, Nucl. Phys. A 504, 668 (1989)CrossRefGoogle Scholar
  29. 29.
    M. Frank, M. Buballa, M. Oertel, Phys. Lett. B 562, 221 (2003) arXiv:hep-ph/0303109 ADSCrossRefGoogle Scholar
  30. 30.
    D. Nowakowski, M. Buballa, S. Carignano, in preparation (2015)Google Scholar
  31. 31.
    D. Lai, S. Shapiro, Astrophys. J. 383, 745 (1991)ADSCrossRefGoogle Scholar
  32. 32.
    E.J. Ferrer, V. de la Incera, J.P. Keith, I. Portillo, P.L. Springsteen, Phys. Rev. C 82, 065802 (2010) arXiv:1009.3521 ADSCrossRefGoogle Scholar
  33. 33.
    M. Bocquet, S. Bonazzola, E. Gourgoulhon, J. Novak, Astron. Astrophys. 301, 757 (1995) arXiv:gr-qc/9503044 ADSGoogle Scholar
  34. 34.
    C.Y. Cardall, M. Prakash, J.M. Lattimer, Astrophys. J. 554, 322 (2001) astro-ph/0011148ADSCrossRefGoogle Scholar
  35. 35.
    H. Suganuma, T. Tatsumi, Ann. Phys. (N.Y.) 208, 470 (1989)ADSCrossRefGoogle Scholar
  36. 36.
    V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Phys. Rev. Lett. 73, 3499 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Nucl. Phys. B 462, 249 (1996) arXiv:hep-ph/9509320 ADSCrossRefGoogle Scholar
  38. 38.
    V.A. Miransky, I.A. Shovkovy, Phys. Rep. 576, 1 (2015) arXiv:1503.00732 ADSCrossRefGoogle Scholar
  39. 39.
    J.O. Andersen, W.R. Naylor, A. Tranberg, arXiv:1411.7176 (2014)
  40. 40.
    V. Schön, M. Thies, Phys. Rev. D 62, 096002 (2000) arXiv:hep-th/0003195 ADSCrossRefGoogle Scholar
  41. 41.
    G. Basar, G.V. Dunne, M. Thies, Phys. Rev. D 79, 105012 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    T. Tatsumi, K. Nishiyama, S. Karasawa, Phys. Lett. B 743, 66 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    K. Nishiyama, S. Karasawa, T. Tatsumi, Phys. Rev. D 92, 036008 (2015) arXiv:1505.01928 ADSCrossRefGoogle Scholar
  44. 44.
    J.D. Walecka, Ann. Phys. (N.Y.) 83, 491 (1974)ADSCrossRefGoogle Scholar
  45. 45.
    U. Vogl, W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991)ADSCrossRefGoogle Scholar
  46. 46.
    D. Ebert, H. Reinhardt, Nucl. Phys. B 271, 188 (1986)ADSCrossRefGoogle Scholar
  47. 47.
    J. Steinheimer, S. Schramm, Phys. Lett. B 696, 257 (2011) arXiv:1005.1176 ADSCrossRefGoogle Scholar
  48. 48.
    J. Steinheimer, S. Schramm, arXiv:1401.4051 (2014)
  49. 49.
    M. Schramm, Master’s thesis, TU Darmstadt (2013)Google Scholar
  50. 50.
    Z. Zhang, T. Kunihiro, Phys. Rev. D 80, 014015 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    H. Abuki, R. Gatto, M. Ruggieri, Phys. Rev. D 80, 074019 (2009) arXiv:0904.0866 ADSCrossRefGoogle Scholar
  52. 52.
    E. Shuster, D.T. Son, Nucl. Phys. B 573, 434 (2000)ADSCrossRefGoogle Scholar
  53. 53.
    J. Berges, K. Rajagopal, Nucl. Phys. B 538, 215 (1999) arXiv:hep-ph/9804233 ADSCrossRefGoogle Scholar
  54. 54.
    T. Schwarz, S. Klevansky, G. Papp, Phys. Rev. C 60, 055205 (1999) arXiv:nucl-th/9903048 ADSCrossRefGoogle Scholar
  55. 55.
    M. Buballa, Phys. Rep. 407, 205 (2005) arXiv:hep-ph/0402234 ADSCrossRefGoogle Scholar
  56. 56.
    D. Müller, M. Buballa, J. Wambach, Eur. Phys. J. A 49, 96 (2013) arXiv:1303.2693 ADSCrossRefGoogle Scholar
  57. 57.
    M. Sadzikowski, Phys. Lett. B 553, 45 (2003) arXiv:hep-ph/0210065 ADSCrossRefGoogle Scholar
  58. 58.
    M. Sadzikowski, Phys. Lett. B 642, 238 (2006) arXiv:hep-ph/0609186 ADSCrossRefGoogle Scholar
  59. 59.
    T. Klähn, D. Blaschke, F. Sandin, C. Fuchs, A. Faessler, H. Grigorian, G. Röpke, J. Trümper, Phys. Lett. B 654, 170 (2007) arXiv:nucl-th/0609067 ADSCrossRefGoogle Scholar
  60. 60.
    M. Alford, K. Rajagopal, JHEP 06, 031 (2002) arXiv:hep-ph/0204001 ADSCrossRefGoogle Scholar
  61. 61.
    I. Giannakis, H.C. Ren, Phys. Lett. B 611, 137 (2005) arXiv:hep-ph/0412015 ADSCrossRefGoogle Scholar
  62. 62.
    K. Rajagopal, F. Wilczek, Phys. Rev. Lett. 86, 3492 (2001) arXiv:hep-ph/0012039 ADSCrossRefGoogle Scholar
  63. 63.
    S.B. Ruester, V. Werth, M. Buballa, I.A. Shovkovy, D.H. Rischke, Phys. Rev. D 72, 034004 (2005) arXiv:hep-ph/0503184 ADSCrossRefGoogle Scholar
  64. 64.
    H. Abuki, M. Kitazawa, T. Kunihiro, Phys. Lett. B 615, 102 (2005) arXiv:hep-ph/0412382 ADSCrossRefGoogle Scholar
  65. 65.
    M. Baldo, M. Buballa, F. Burgio, F. Neumann, M. Oertel, H.J. Schulze, Phys. Lett. B 562, 153 (2003) arXiv:nucl-th/0212096 ADSCrossRefGoogle Scholar
  66. 66.
    M. Buballa, F. Neumann, M. Oertel, I. Shovkovy, Phys. Lett. B 595, 36 (2004) arXiv:nucl-th/0312078 ADSCrossRefGoogle Scholar
  67. 67.
    J. Moreira, B. Hiller, W. Broniowski, A. Osipov, A. Blin, Phys. Rev. D 89, 036009 (2014) arXiv:1312.4942 ADSCrossRefGoogle Scholar
  68. 68.
    S. Carignano, E.J. Ferrer, V. de la Incera, L. Paulucci, Phys. Rev. D 92, 105018 (2015) arXiv:1505.05094 ADSCrossRefGoogle Scholar
  69. 69.
    T. Tatsumi, T. Muto, Phys. Rev. D 89, 103005 (2014) arXiv:1403.1927 ADSCrossRefGoogle Scholar
  70. 70.
    J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)ADSCrossRefGoogle Scholar
  71. 71.
    R.C. Tolman, Phys. Rev. 55, 364 (1939)ADSCrossRefGoogle Scholar
  72. 72.
    D. Chatterjee, T. Elghozi, J. Novak, M. Oertel, Mon. Not. R. Astron. Soc. 447, 3785 (2015) arXiv:1410.6332 ADSCrossRefGoogle Scholar
  73. 73.
    A. Heinz, F. Giacosa, D.H. Rischke, Nucl. Phys. A 933, 34 (2015) arXiv:1312.3244 ADSCrossRefGoogle Scholar
  74. 74.
    G. Pagliara, J. Schaffner-Bielich, Phys. Rev. D 77, 063004 (2008) arXiv:0711.1119 ADSCrossRefGoogle Scholar
  75. 75.
    N.K. Glendenning, Phys. Rev. D 46, 1274 (1992)ADSCrossRefGoogle Scholar
  76. 76.
    R. Alkofer, H. Reinhardt, H. Weigel, Phys. Rep. 265, 139 (1996) arXiv:hep-ph/9501213 ADSMathSciNetCrossRefGoogle Scholar
  77. 77.
    C. Christov et al., Prog. Part. Nucl. Phys. 37, 91 (1996) arXiv:hep-ph/9604441 ADSCrossRefGoogle Scholar
  78. 78.
    G. Ripka, Quarks Bound by Chiral Fields: The Quark Structure of the Vacuum and of Light Mesons and Baryons, Oxford Studies in Nuclear Physics (Clarendon Press, 1997)Google Scholar
  79. 79.
    G.G. Pavlov, V.E. Zavlin, D. Sanwal, V. Burwitz, G.P. Garmire, Astrophys. J. 552, L129 (2001)ADSCrossRefGoogle Scholar
  80. 80.
    P.O. Slane, D.J. Helfand, S.S. Murray, Astrophys. J. 571, L45 (2002)ADSCrossRefGoogle Scholar
  81. 81.
    W.C.G. Ho, C.O. Heinke, Nature 462, 71 (2009) DOI:10.1038/nature08525 ADSCrossRefGoogle Scholar
  82. 82.
    N. Iwamoto, Phys. Rev. Lett. 44, 1637 (1980)ADSCrossRefGoogle Scholar
  83. 83.
    O. Maxwell, G.E. Brown, D.K. Campbell, R.F. Dashen, J.T. Manassah, Astrophys. J. 216, 77 (1977)ADSCrossRefGoogle Scholar
  84. 84.
    T.G. Lee, E. Nakano, Y. Tsue, T. Tatsumi, B. Friman, arXiv:1504.03185 (2015)
  85. 85.
    Y. Hidaka, K. Kamikado, T. Kanazawa, T. Noumi, Phys. Rev. D 92, 034003 (2015) arXiv:1505.00848 ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Theoriezentrum, Institut für KernphysikTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations