Advertisement

Exploring properties of high-density matter through remnants of neutron-star mergers

  • Andreas BausweinEmail author
  • Nikolaos Stergioulas
  • Hans-Thomas Janka
Review
Part of the following topical collections:
  1. Exotic Matter in Neutron Stars

Abstract.

Remnants of neutron-star mergers are essentially massive, hot, differentially rotating neutron stars, which are initially strongly oscillating. As such they represent a unique probe for high-density matter because the oscillations are detectable via gravitational-wave measurements and are strongly dependent on the equation of state. The impact of the equation of state for instance is apparent in the frequency of the dominant oscillation mode of the remnant. For a fixed total binary mass a tight relation between the dominant postmerger oscillation frequency and the radii of nonrotating neutron stars exists. Inferring observationally the dominant postmerger frequency thus determines neutron star radii with high accuracy of the order of a few hundred meters. By considering symmetric and asymmetric binaries of the same chirp mass, we show that the knowledge of the binary mass ratio is not critical for this kind of radius measurements. We perform simulations which show that initial intrinsic neutron star rotation is unlikely to affect this method of constraining the high-density equation of state. We also summarize different possibilities about how the postmerger gravitational-wave emission can be employed to deduce the maximum mass of nonrotating neutron stars. We clarify the nature of the three most prominent features of the postmerger gravitational-wave spectrum and argue that the merger remnant can be considered to be a single, isolated, self-gravitating object that can be described by concepts of asteroseismology. We sketch how the consideration of the strength of secondary gravitational-wave peaks leads to a classification scheme of the gravitational-wave emission and postmerger dynamics. The understanding of the different mechanisms shaping the gravitational-wave signal yields a physically motivated analytic model of the gravitational-wave emission, which may form the basis for template-based gravitational-wave data analysis. We explore the observational consequences of a scenario of two families of compact stars including hadronic and quark matter stars. We find that this scenario leaves a distinctive imprint on the postmerger gravitational-wave signal. In particular, a strong discontinuity in the dominant postmerger frequency as function of the total mass will be a strong indication for two families of compact stars.

Keywords

Neutron Star Compact Star Binary Mass Neutron Star Matter Neutron Star Binary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    LIGO Scientific Collaboration and Virgo Collaboration (B.P. Abbott et al.), Phys. Rev. Lett. 116, 061102 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    J.H. Taylor, J.M. Weisberg, Astrophys. J. 345, 434 (1989)ADSCrossRefGoogle Scholar
  3. 3.
    I.H. Stairs, Living Rev. Relativ. 6, 5 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    J.M. Weisberg, D.J. Nice, J.H. Taylor, Astrophys. J. 722, 1030 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    R.A. Hulse, J.H. Taylor, Astrophys. J. Lett. 195, L51 (1975)ADSCrossRefGoogle Scholar
  6. 6.
    A. Bauswein, H.-T. Janka, K. Hebeler, A. Schwenk, Phys. Rev. D 86, 063001 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    F. Acernese, M. Agathos, K. Agatsuma et al., Class. Quantum Grav. 32, 024001 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Aso, Y. Michimura, K. Somiya et al., Phys. Rev. D 88, 043007 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    The LIGO Scientific Collaboration, J. Aasi, B.P. Abbott et al., Class. Quantum Grav. 32, 074001 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    J. Abadie et al., Class. Quantum Grav. 27, 173001 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    A. Bauswein, N. Stergioulas, Phys. Rev. D 91, 124056 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    M.D. Duez, Class. Quantum Grav. 27, 114002 (2010)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    N. Andersson, V. Ferrari, D.I. Jones et al., Gen. Relativ. Gravit. 43, 409 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    T.W. Baumgarte, S.L. Shapiro, Numerical relativity: Solving Einstein’s Equations on the Computer (Cambridge University Press, Cambridge, 2010)Google Scholar
  15. 15.
    J.A. Faber, F.A. Rasio, Living Rev. Relativ. 15, 8 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    L. Rezzolla, O. Zanotti, Relativistic Hydrodynamics (Oxford University Press, New York, 2013)Google Scholar
  17. 17.
    J. Clark, A. Bauswein, L. Cadonati et al., Phys. Rev. D 90, 062004 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    J.A. Clark, A. Bauswein, N. Stergioulas, D. Shoemaker, arXiv:1509.08522 (2015)
  19. 19.
    A. Bauswein, H.-T. Janka, Phys. Rev. Lett. 108, 011101 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    J.M. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    T. Hinderer, B.D. Lackey, R.N. Lang, J.S. Read, Phys. Rev. D 81, 123016 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    T. Damour, A. Nagar, Phys. Rev. D 81, 084016 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    T. Damour, A. Nagar, L. Villain, Phys. Rev. D 85, 123007 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    M. Favata, Phys. Rev. Lett. 112, 101101 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    J.S. Read, L. Baiotti, J.D.E. Creighton et al., Phys. Rev. D 88, 044042 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    W. Del Pozzo, T.G.F. Li, M. Agathos, C. Van Den Broeck, S. Vitale, Phys. Rev. Lett. 111, 071101 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    L. Wade, J.D.E. Creighton, E. Ochsner et al., Phys. Rev. D 89, 103012 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    M. Agathos, J. Meidam, W. Del Pozzo et al., Phys. Rev. D 92, 023012 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    B.D. Lackey, L. Wade, Phys. Rev. D 91, 043002 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    K. Chatziioannou, K. Yagi, A. Klein, N. Cornish, N. Yunes, arXiv:1508.02062 (2015)
  31. 31.
    A. Bauswein, N. Stergioulas, H.-T. Janka, Phys. Rev. D 90, 023002 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    A. Bauswein, N. Stergioulas, H.T. Janka, Phys. Part. Nucl. 46, 835 (2015)CrossRefGoogle Scholar
  33. 33.
    A. Bauswein, T.W. Baumgarte, H.-T. Janka, Phys. Rev. Lett. 111, 131101 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    N. Stergioulas, A. Bauswein, K. Zagkouris, H.-T. Janka, Mon. Not. R. Astron. Soc. 418, 427 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    A. Drago, A. Lavagno, G. Pagliara, Phys. Rev. D 89, 043014 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    R. Oechslin, S. Rosswog, F.-K. Thielemann, Phys. Rev. D 65, 103005 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    R. Oechslin, H.-T. Janka, A. Marek, Astron. Astrophys. 467, 395 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    A. Bauswein, H.-T. Janka, R. Oechslin, Phys. Rev. D 82, 084043 (2010a)ADSCrossRefGoogle Scholar
  39. 39.
    A. Bauswein, R. Oechslin, H.-T. Janka, Phys. Rev. D 81, 024012 (2010b)ADSCrossRefGoogle Scholar
  40. 40.
    W.H. Lee, E. Ramirez-Ruiz, G. van de Ven, Astrophys. J. 720, 953 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    L.S. Finn, D.F. Chernoff, Phys. Rev. D 47, 2198 (1993)ADSCrossRefGoogle Scholar
  42. 42.
    C. Cutler, É.E. Flanagan, Phys. Rev. D 49, 2658 (1994)ADSCrossRefGoogle Scholar
  43. 43.
    P. Jaranowski, K.D. Kokkotas, A. Królak, G. Tsegas, Class. Quantum Grav. 13, 1279 (1996)ADSCrossRefGoogle Scholar
  44. 44.
    K.G. Arun, B.R. Iyer, B.S. Sathyaprakash, P.A. Sundararajan, Phys. Rev. D 71, 084008 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    M. van der Sluys, V. Raymond, I. Mandel et al., Class. Quantum Grav. 25, 184011 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    J. Veitch, I. Mandel, B. Aylott et al., Phys. Rev. D 85, 104045 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    M. Hannam, D.A. Brown, S. Fairhurst, C.L. Fryer, I.W. Harry, Astrophys. J. Lett. 766, L14 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    J. Aasi, J. Abadie, B.P. Abbott et al., Phys. Rev. D 88, 062001 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    C.L. Rodriguez, B. Farr, V. Raymond et al., Astrophys. J. 784, 119 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    J. Veitch, V. Raymond, B. Farr et al., Phys. Rev. D 91, 042003 (2015)ADSCrossRefGoogle Scholar
  51. 51.
    B. Farr, C.P.L. Berry, W.M. Farr, arXiv:1508.05336 (2015)
  52. 52.
    M. Dominik, K. Belczynski, C. Fryer et al., Astrophys. J. 759, 52 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    T. Ertl, H.-T. Janka, S.E. Woosley, T. Sukhbold, M. Ugliano, arXiv:1503.07522 (2015)
  54. 54.
    V. Paschalidis, Y.T. Liu, Z. Etienne, S.L. Shapiro, Phys. Rev. D 84, 104032 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    X. Zhuge, J.M. Centrella, S.L.W. McMillan, Phys. Rev. D 50, 6247 (1994)ADSCrossRefGoogle Scholar
  56. 56.
    M. Ruffert, H.-T. Janka, G. Schaefer, Astron. Astrophys. 311, 532 (1996)ADSGoogle Scholar
  57. 57.
    T.W. Baumgarte, S.L. Shapiro, M. Shibata, Astrophys. J. Lett. 528, L29 (2000)ADSCrossRefGoogle Scholar
  58. 58.
    N.D. Lyford, T.W. Baumgarte, S.L. Shapiro, Astrophys. J. 583, 410 (2003)ADSCrossRefGoogle Scholar
  59. 59.
    M. Shibata, Phys. Rev. Lett. 94, 201101 (2005)ADSCrossRefGoogle Scholar
  60. 60.
    M. Shibata, K. Taniguchi, K. Uryu, Phys. Rev. D 71, 084021 (2005)ADSCrossRefGoogle Scholar
  61. 61.
    M. Shibata, K. Taniguchi, Phys. Rev. D 73, 064027 (2006)ADSCrossRefGoogle Scholar
  62. 62.
    R. Oechslin, H.-T. Janka, Phys. Rev. Lett. 99, 121102 (2007)ADSCrossRefGoogle Scholar
  63. 63.
    M. Anderson, E.W. Hirschmann, L. Lehner et al., Phys. Rev. D 77, 024006 (2008)ADSCrossRefGoogle Scholar
  64. 64.
    Y.T. Liu, S.L. Shapiro, Z.B. Etienne, K. Taniguchi, Phys. Rev. D 78, 024012 (2008)ADSCrossRefGoogle Scholar
  65. 65.
    L. Baiotti, B. Giacomazzo, L. Rezzolla, Phys. Rev. D 78, 084033 (2008)ADSCrossRefGoogle Scholar
  66. 66.
    K. Kiuchi, Y. Sekiguchi, M. Shibata, K. Taniguchi, Phys. Rev. D 80, 064037 (2009)ADSCrossRefGoogle Scholar
  67. 67.
    B. Giacomazzo, L. Rezzolla, L. Baiotti, Phys. Rev. D 83, 044014 (2011)ADSCrossRefGoogle Scholar
  68. 68.
    K. Hotokezaka, K. Kyutoku, H. Okawa, M. Shibata, K. Kiuchi, Phys. Rev. D 83, 124008 (2011)ADSCrossRefGoogle Scholar
  69. 69.
    Y. Sekiguchi, K. Kiuchi, K. Kyutoku, M. Shibata, Phys. Rev. Lett. 107, 051102 (2011)ADSCrossRefGoogle Scholar
  70. 70.
    V. Paschalidis, Z.B. Etienne, S.L. Shapiro, Phys. Rev. D 86, 064032 (2012)ADSCrossRefGoogle Scholar
  71. 71.
    S. Rosswog, T. Piran, E. Nakar, Mon. Not. R. Astron. Soc. 430, 2585 (2013)ADSCrossRefGoogle Scholar
  72. 72.
    K. Hotokezaka, K. Kiuchi, K. Kyutoku et al., Phys. Rev. D 88, 044026 (2013)ADSCrossRefGoogle Scholar
  73. 73.
    S. Bernuzzi, T. Dietrich, W. Tichy, B. Brügmann, Phys. Rev. D 89, 104021 (2014)ADSCrossRefGoogle Scholar
  74. 74.
    K. Takami, L. Rezzolla, L. Baiotti, Phys. Rev. Lett. 113, 091104 (2014)ADSCrossRefGoogle Scholar
  75. 75.
    K. Kiuchi, K. Kyutoku, Y. Sekiguchi, M. Shibata, T. Wada, Phys. Rev. D 90, 041502 (2014)ADSCrossRefGoogle Scholar
  76. 76.
    D. Radice, L. Rezzolla, F. Galeazzi, Mon. Not. R. Astron. Soc. 437, L46 (2014)ADSCrossRefGoogle Scholar
  77. 77.
    K. Takami, L. Rezzolla, L. Baiotti, Phys. Rev. D 91, 064001 (2015)ADSCrossRefGoogle Scholar
  78. 78.
    W. Kastaun, F. Galeazzi, Phys. Rev. D 91, 064027 (2015)ADSCrossRefGoogle Scholar
  79. 79.
    S. Bernuzzi, T. Dietrich, A. Nagar, Phys. Rev. Lett. 115, 091101 (2015)ADSCrossRefGoogle Scholar
  80. 80.
    C. Palenzuela, S.L. Liebling, D. Neilsen et al., Phys. Rev. D 92, 044045 (2015)ADSCrossRefGoogle Scholar
  81. 81.
    T. Dietrich, N. Moldenhauer, N.K. Johnson-McDaniel, arXiv:1507.07100 (2015)
  82. 82.
    K. Dionysopoulou, D. Alic, L. Rezzolla, Phys. Rev. D 92, 084064 (2015)ADSCrossRefGoogle Scholar
  83. 83.
    R. De Pietri, A. Feo, F. Maione, F. Löffler, arXiv:1509.08804 (2015)
  84. 84.
    F. Foucart, R. Haas, M.D. Duez, arXiv:1510.06398 (2015)
  85. 85.
    M. Hempel, J. Schaffner-Bielich, Nucl. Phys. A 837, 210 (2010)ADSCrossRefGoogle Scholar
  86. 86.
    S. Typel, G. Röpke, T. Klähn, D. Blaschke, H.H. Wolter, Phys. Rev. C 81, 015803 (2010)ADSCrossRefGoogle Scholar
  87. 87.
    G.M. Harry, LIGO Scientific Collaboration, Class. Quantum Grav. 27, 084006 (2010)ADSCrossRefGoogle Scholar
  88. 88.
    S. Hild, S. Chelkowski, A. Freise et al., Class. Quantum Grav. 27, 015003 (2010)ADSCrossRefGoogle Scholar
  89. 89.
    R.C. Tolman, Phys. Rev. 55, 364 (1939)ADSCrossRefGoogle Scholar
  90. 90.
    J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)ADSCrossRefGoogle Scholar
  91. 91.
    N. Andersson, K.D. Kokkotas, Mon. Not. R. Astron. Soc. 299, 1059 (1998)ADSCrossRefGoogle Scholar
  92. 92.
    L.-X. Li, B. Paczyński, Astrophys. J. Lett. 507, L59 (1998)ADSCrossRefGoogle Scholar
  93. 93.
    S.R. Kulkarni, arXiv:astro-ph/0510256 (2005)
  94. 94.
    B.D. Metzger, G. Martínez-Pinedo, S. Darbha et al., Mon. Not. R. Astron. Soc. 406, 2650 (2010)ADSCrossRefGoogle Scholar
  95. 95.
    S. Nissanke, M. Kasliwal, A. Georgieva, Astrophys. J. 767, 124 (2013)ADSCrossRefGoogle Scholar
  96. 96.
    A. Bauswein, S. Goriely, H.-T. Janka, Astrophys. J. 773, 78 (2013)ADSCrossRefGoogle Scholar
  97. 97.
    B.D. Metzger, E. Berger, Astrophys. J. 746, 48 (2012)ADSCrossRefGoogle Scholar
  98. 98.
    B.D. Metzger, A. Bauswein, S. Goriely, D. Kasen, Mon. Not. R. Astron. Soc. 446, 1115 (2015)ADSCrossRefGoogle Scholar
  99. 99.
    K. Hebeler, J.M. Lattimer, C.J. Pethick, A. Schwenk, Phys. Rev. Lett. 105, 161102 (2010)ADSCrossRefGoogle Scholar
  100. 100.
    C. Constantinou, B. Muccioli, M. Prakash, J.M. Lattimer, Phys. Rev. C 92, 025801 (2015)ADSCrossRefGoogle Scholar
  101. 101.
    B. Paczynski, Astrophys. J. Lett. 308, L43 (1986)ADSCrossRefGoogle Scholar
  102. 102.
    D. Eichler, M. Livio, T. Piran, D.N. Schramm, Nature 340, 126 (1989)ADSCrossRefGoogle Scholar
  103. 103.
    E. Berger, Annu. Rev. Astron. Astrophys. 52, 43 (2014)ADSCrossRefGoogle Scholar
  104. 104.
    N. Hansen, in Towards a new evolutionary computation. Advances on estimation of distribution algorithms, edited by J. Lozano, P. Larranaga, I. Inza, E. Bengoetxea (Springer, 2006) pp. 75--102Google Scholar
  105. 105.
    L. Bildsten, C. Cutler, Astrophys. J. 400, 175 (1992)ADSCrossRefGoogle Scholar
  106. 106.
    C.S. Kochanek, Astrophys. J. 398, 234 (1992)ADSCrossRefGoogle Scholar
  107. 107.
    D.R. Lorimer, Living Rev. Relativ. 11, 8 (2008)ADSCrossRefGoogle Scholar
  108. 108.
    J. Isenberg, J. Nester, in General Relativity and Gravitation (Plenum Press, New York, 1980) p. 23Google Scholar
  109. 109.
    J.R. Wilson, G.J. Mathews, P. Marronetti, Phys. Rev. D 54, 1317 (1996)ADSCrossRefGoogle Scholar
  110. 110.
    A.R. Bodmer, Phys. Rev. D 4, 1601 (1971)ADSCrossRefGoogle Scholar
  111. 111.
    E. Witten, Phys. Rev. D 30, 272 (1984)ADSCrossRefGoogle Scholar
  112. 112.
    Z. Berezhiani, I. Bombaci, A. Drago, F. Frontera, A. Lavagno, Astrophys. J. 586, 1250 (2003)ADSCrossRefGoogle Scholar
  113. 113.
    I. Bombaci, I. Parenti, I. Vidaña, Astrophys. J. 614, 314 (2004)ADSCrossRefGoogle Scholar
  114. 114.
    S. Benić, D. Blaschke, D.E. Alvarez-Castillo, T. Fischer, S. Typel, Astron. Astrophys. 577, A40 (2015)ADSCrossRefGoogle Scholar
  115. 115.
    T. Klähn, T. Fischer, Astrophys. J. 810, 134 (2015)ADSCrossRefGoogle Scholar
  116. 116.
    A.V. Olinto, Phys. Lett. B 192, 71 (1987)ADSCrossRefGoogle Scholar
  117. 117.
    G. Lugones, O.G. Benvenuto, H. Vucetich, Phys. Rev. D 50, 6100 (1994)ADSCrossRefGoogle Scholar
  118. 118.
    M. Herzog, F.K. Röpke, Phys. Rev. D 84, 083002 (2011)ADSCrossRefGoogle Scholar
  119. 119.
    G. Pagliara, M. Herzog, F.K. Röpke, Phys. Rev. D 87, 103007 (2013)ADSCrossRefGoogle Scholar
  120. 120.
    A. Drago, G. Pagliara, Phys. Rev. C 92, 045801 (2015)ADSCrossRefGoogle Scholar
  121. 121.
    C. Alcock, E. Farhi, A. Olinto, Astrophys. J. 310, 261 (1986)ADSCrossRefGoogle Scholar
  122. 122.
    J. Madsen, Phys. Rev. Lett. 61, 2909 (1988)ADSCrossRefGoogle Scholar
  123. 123.
    R.R. Caldwell, J.L. Friedman, Phys. Lett. B 264, 143 (1991)ADSCrossRefGoogle Scholar
  124. 124.
    A. Bauswein, H.-T. Janka, R. Oechslin et al., Phys. Rev. Lett. 103, 011101 (2009)ADSCrossRefGoogle Scholar
  125. 125.
    J.E. Horvath, L. Paulucci Marinho, arXiv:1504.03365 (2015)
  126. 126.
    A. Drago, A. Lavagno, G. Pagliara, D. Pigato, Phys. Rev. C 90, 065809 (2014)ADSCrossRefGoogle Scholar
  127. 127.
    A.W. Steiner, M. Hempel, T. Fischer, Astrophys. J. 774, 17 (2013)ADSCrossRefGoogle Scholar
  128. 128.
    E.S. Fraga, A. Kurkela, A. Vuorinen, Astrophys. J. Lett. 781, L25 (2014)ADSCrossRefGoogle Scholar
  129. 129.
    S. Hild, Class. Quantum Grav. 29, 124006 (2012)ADSCrossRefGoogle Scholar
  130. 130.
    R.X. Adhikari, Rev. Mod. Phys. 86, 121 (2014)ADSCrossRefGoogle Scholar
  131. 131.
    J. Miller, L. Barsotti, S. Vitale et al., Phys. Rev. D 91, 062005 (2015)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Andreas Bauswein
    • 1
    • 2
    Email author
  • Nikolaos Stergioulas
    • 1
  • Hans-Thomas Janka
    • 3
  1. 1.Department of PhysicsAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Heidelberger Institut für Theoretische StudienHeidelbergGermany
  3. 3.Max-Planck-Institut für AstrophysikGarchingGermany

Personalised recommendations