Skip to main content
Log in

Exploring properties of high-density matter through remnants of neutron-star mergers

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Remnants of neutron-star mergers are essentially massive, hot, differentially rotating neutron stars, which are initially strongly oscillating. As such they represent a unique probe for high-density matter because the oscillations are detectable via gravitational-wave measurements and are strongly dependent on the equation of state. The impact of the equation of state for instance is apparent in the frequency of the dominant oscillation mode of the remnant. For a fixed total binary mass a tight relation between the dominant postmerger oscillation frequency and the radii of nonrotating neutron stars exists. Inferring observationally the dominant postmerger frequency thus determines neutron star radii with high accuracy of the order of a few hundred meters. By considering symmetric and asymmetric binaries of the same chirp mass, we show that the knowledge of the binary mass ratio is not critical for this kind of radius measurements. We perform simulations which show that initial intrinsic neutron star rotation is unlikely to affect this method of constraining the high-density equation of state. We also summarize different possibilities about how the postmerger gravitational-wave emission can be employed to deduce the maximum mass of nonrotating neutron stars. We clarify the nature of the three most prominent features of the postmerger gravitational-wave spectrum and argue that the merger remnant can be considered to be a single, isolated, self-gravitating object that can be described by concepts of asteroseismology. We sketch how the consideration of the strength of secondary gravitational-wave peaks leads to a classification scheme of the gravitational-wave emission and postmerger dynamics. The understanding of the different mechanisms shaping the gravitational-wave signal yields a physically motivated analytic model of the gravitational-wave emission, which may form the basis for template-based gravitational-wave data analysis. We explore the observational consequences of a scenario of two families of compact stars including hadronic and quark matter stars. We find that this scenario leaves a distinctive imprint on the postmerger gravitational-wave signal. In particular, a strong discontinuity in the dominant postmerger frequency as function of the total mass will be a strong indication for two families of compact stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LIGO Scientific Collaboration and Virgo Collaboration (B.P. Abbott et al.), Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  Google Scholar 

  2. J.H. Taylor, J.M. Weisberg, Astrophys. J. 345, 434 (1989)

    Article  ADS  Google Scholar 

  3. I.H. Stairs, Living Rev. Relativ. 6, 5 (2003)

    Article  ADS  Google Scholar 

  4. J.M. Weisberg, D.J. Nice, J.H. Taylor, Astrophys. J. 722, 1030 (2010)

    Article  ADS  Google Scholar 

  5. R.A. Hulse, J.H. Taylor, Astrophys. J. Lett. 195, L51 (1975)

    Article  ADS  Google Scholar 

  6. A. Bauswein, H.-T. Janka, K. Hebeler, A. Schwenk, Phys. Rev. D 86, 063001 (2012)

    Article  ADS  Google Scholar 

  7. F. Acernese, M. Agathos, K. Agatsuma et al., Class. Quantum Grav. 32, 024001 (2015)

    Article  ADS  Google Scholar 

  8. Y. Aso, Y. Michimura, K. Somiya et al., Phys. Rev. D 88, 043007 (2013)

    Article  ADS  Google Scholar 

  9. The LIGO Scientific Collaboration, J. Aasi, B.P. Abbott et al., Class. Quantum Grav. 32, 074001 (2015)

    Article  ADS  Google Scholar 

  10. J. Abadie et al., Class. Quantum Grav. 27, 173001 (2010)

    Article  ADS  Google Scholar 

  11. A. Bauswein, N. Stergioulas, Phys. Rev. D 91, 124056 (2015)

    Article  ADS  Google Scholar 

  12. M.D. Duez, Class. Quantum Grav. 27, 114002 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  13. N. Andersson, V. Ferrari, D.I. Jones et al., Gen. Relativ. Gravit. 43, 409 (2011)

    Article  ADS  Google Scholar 

  14. T.W. Baumgarte, S.L. Shapiro, Numerical relativity: Solving Einstein’s Equations on the Computer (Cambridge University Press, Cambridge, 2010)

  15. J.A. Faber, F.A. Rasio, Living Rev. Relativ. 15, 8 (2012)

    Article  ADS  Google Scholar 

  16. L. Rezzolla, O. Zanotti, Relativistic Hydrodynamics (Oxford University Press, New York, 2013)

  17. J. Clark, A. Bauswein, L. Cadonati et al., Phys. Rev. D 90, 062004 (2014)

    Article  ADS  Google Scholar 

  18. J.A. Clark, A. Bauswein, N. Stergioulas, D. Shoemaker, arXiv:1509.08522 (2015)

  19. A. Bauswein, H.-T. Janka, Phys. Rev. Lett. 108, 011101 (2012)

    Article  ADS  Google Scholar 

  20. J.M. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485 (2012)

    Article  ADS  Google Scholar 

  21. T. Hinderer, B.D. Lackey, R.N. Lang, J.S. Read, Phys. Rev. D 81, 123016 (2010)

    Article  ADS  Google Scholar 

  22. T. Damour, A. Nagar, Phys. Rev. D 81, 084016 (2010)

    Article  ADS  Google Scholar 

  23. T. Damour, A. Nagar, L. Villain, Phys. Rev. D 85, 123007 (2012)

    Article  ADS  Google Scholar 

  24. M. Favata, Phys. Rev. Lett. 112, 101101 (2014)

    Article  ADS  Google Scholar 

  25. J.S. Read, L. Baiotti, J.D.E. Creighton et al., Phys. Rev. D 88, 044042 (2013)

    Article  ADS  Google Scholar 

  26. W. Del Pozzo, T.G.F. Li, M. Agathos, C. Van Den Broeck, S. Vitale, Phys. Rev. Lett. 111, 071101 (2013)

    Article  ADS  Google Scholar 

  27. L. Wade, J.D.E. Creighton, E. Ochsner et al., Phys. Rev. D 89, 103012 (2014)

    Article  ADS  Google Scholar 

  28. M. Agathos, J. Meidam, W. Del Pozzo et al., Phys. Rev. D 92, 023012 (2015)

    Article  ADS  Google Scholar 

  29. B.D. Lackey, L. Wade, Phys. Rev. D 91, 043002 (2015)

    Article  ADS  Google Scholar 

  30. K. Chatziioannou, K. Yagi, A. Klein, N. Cornish, N. Yunes, arXiv:1508.02062 (2015)

  31. A. Bauswein, N. Stergioulas, H.-T. Janka, Phys. Rev. D 90, 023002 (2014)

    Article  ADS  Google Scholar 

  32. A. Bauswein, N. Stergioulas, H.T. Janka, Phys. Part. Nucl. 46, 835 (2015)

    Article  Google Scholar 

  33. A. Bauswein, T.W. Baumgarte, H.-T. Janka, Phys. Rev. Lett. 111, 131101 (2013)

    Article  ADS  Google Scholar 

  34. N. Stergioulas, A. Bauswein, K. Zagkouris, H.-T. Janka, Mon. Not. R. Astron. Soc. 418, 427 (2011)

    Article  ADS  Google Scholar 

  35. A. Drago, A. Lavagno, G. Pagliara, Phys. Rev. D 89, 043014 (2014)

    Article  ADS  Google Scholar 

  36. R. Oechslin, S. Rosswog, F.-K. Thielemann, Phys. Rev. D 65, 103005 (2002)

    Article  ADS  Google Scholar 

  37. R. Oechslin, H.-T. Janka, A. Marek, Astron. Astrophys. 467, 395 (2007)

    Article  ADS  Google Scholar 

  38. A. Bauswein, H.-T. Janka, R. Oechslin, Phys. Rev. D 82, 084043 (2010a)

    Article  ADS  Google Scholar 

  39. A. Bauswein, R. Oechslin, H.-T. Janka, Phys. Rev. D 81, 024012 (2010b)

    Article  ADS  Google Scholar 

  40. W.H. Lee, E. Ramirez-Ruiz, G. van de Ven, Astrophys. J. 720, 953 (2010)

    Article  ADS  Google Scholar 

  41. L.S. Finn, D.F. Chernoff, Phys. Rev. D 47, 2198 (1993)

    Article  ADS  Google Scholar 

  42. C. Cutler, É.E. Flanagan, Phys. Rev. D 49, 2658 (1994)

    Article  ADS  Google Scholar 

  43. P. Jaranowski, K.D. Kokkotas, A. Królak, G. Tsegas, Class. Quantum Grav. 13, 1279 (1996)

    Article  ADS  Google Scholar 

  44. K.G. Arun, B.R. Iyer, B.S. Sathyaprakash, P.A. Sundararajan, Phys. Rev. D 71, 084008 (2005)

    Article  ADS  Google Scholar 

  45. M. van der Sluys, V. Raymond, I. Mandel et al., Class. Quantum Grav. 25, 184011 (2008)

    Article  ADS  Google Scholar 

  46. J. Veitch, I. Mandel, B. Aylott et al., Phys. Rev. D 85, 104045 (2012)

    Article  ADS  Google Scholar 

  47. M. Hannam, D.A. Brown, S. Fairhurst, C.L. Fryer, I.W. Harry, Astrophys. J. Lett. 766, L14 (2013)

    Article  ADS  Google Scholar 

  48. J. Aasi, J. Abadie, B.P. Abbott et al., Phys. Rev. D 88, 062001 (2013)

    Article  ADS  Google Scholar 

  49. C.L. Rodriguez, B. Farr, V. Raymond et al., Astrophys. J. 784, 119 (2014)

    Article  ADS  Google Scholar 

  50. J. Veitch, V. Raymond, B. Farr et al., Phys. Rev. D 91, 042003 (2015)

    Article  ADS  Google Scholar 

  51. B. Farr, C.P.L. Berry, W.M. Farr, arXiv:1508.05336 (2015)

  52. M. Dominik, K. Belczynski, C. Fryer et al., Astrophys. J. 759, 52 (2012)

    Article  ADS  Google Scholar 

  53. T. Ertl, H.-T. Janka, S.E. Woosley, T. Sukhbold, M. Ugliano, arXiv:1503.07522 (2015)

  54. V. Paschalidis, Y.T. Liu, Z. Etienne, S.L. Shapiro, Phys. Rev. D 84, 104032 (2011)

    Article  ADS  Google Scholar 

  55. X. Zhuge, J.M. Centrella, S.L.W. McMillan, Phys. Rev. D 50, 6247 (1994)

    Article  ADS  Google Scholar 

  56. M. Ruffert, H.-T. Janka, G. Schaefer, Astron. Astrophys. 311, 532 (1996)

    ADS  Google Scholar 

  57. T.W. Baumgarte, S.L. Shapiro, M. Shibata, Astrophys. J. Lett. 528, L29 (2000)

    Article  ADS  Google Scholar 

  58. N.D. Lyford, T.W. Baumgarte, S.L. Shapiro, Astrophys. J. 583, 410 (2003)

    Article  ADS  Google Scholar 

  59. M. Shibata, Phys. Rev. Lett. 94, 201101 (2005)

    Article  ADS  Google Scholar 

  60. M. Shibata, K. Taniguchi, K. Uryu, Phys. Rev. D 71, 084021 (2005)

    Article  ADS  Google Scholar 

  61. M. Shibata, K. Taniguchi, Phys. Rev. D 73, 064027 (2006)

    Article  ADS  Google Scholar 

  62. R. Oechslin, H.-T. Janka, Phys. Rev. Lett. 99, 121102 (2007)

    Article  ADS  Google Scholar 

  63. M. Anderson, E.W. Hirschmann, L. Lehner et al., Phys. Rev. D 77, 024006 (2008)

    Article  ADS  Google Scholar 

  64. Y.T. Liu, S.L. Shapiro, Z.B. Etienne, K. Taniguchi, Phys. Rev. D 78, 024012 (2008)

    Article  ADS  Google Scholar 

  65. L. Baiotti, B. Giacomazzo, L. Rezzolla, Phys. Rev. D 78, 084033 (2008)

    Article  ADS  Google Scholar 

  66. K. Kiuchi, Y. Sekiguchi, M. Shibata, K. Taniguchi, Phys. Rev. D 80, 064037 (2009)

    Article  ADS  Google Scholar 

  67. B. Giacomazzo, L. Rezzolla, L. Baiotti, Phys. Rev. D 83, 044014 (2011)

    Article  ADS  Google Scholar 

  68. K. Hotokezaka, K. Kyutoku, H. Okawa, M. Shibata, K. Kiuchi, Phys. Rev. D 83, 124008 (2011)

    Article  ADS  Google Scholar 

  69. Y. Sekiguchi, K. Kiuchi, K. Kyutoku, M. Shibata, Phys. Rev. Lett. 107, 051102 (2011)

    Article  ADS  Google Scholar 

  70. V. Paschalidis, Z.B. Etienne, S.L. Shapiro, Phys. Rev. D 86, 064032 (2012)

    Article  ADS  Google Scholar 

  71. S. Rosswog, T. Piran, E. Nakar, Mon. Not. R. Astron. Soc. 430, 2585 (2013)

    Article  ADS  Google Scholar 

  72. K. Hotokezaka, K. Kiuchi, K. Kyutoku et al., Phys. Rev. D 88, 044026 (2013)

    Article  ADS  Google Scholar 

  73. S. Bernuzzi, T. Dietrich, W. Tichy, B. Brügmann, Phys. Rev. D 89, 104021 (2014)

    Article  ADS  Google Scholar 

  74. K. Takami, L. Rezzolla, L. Baiotti, Phys. Rev. Lett. 113, 091104 (2014)

    Article  ADS  Google Scholar 

  75. K. Kiuchi, K. Kyutoku, Y. Sekiguchi, M. Shibata, T. Wada, Phys. Rev. D 90, 041502 (2014)

    Article  ADS  Google Scholar 

  76. D. Radice, L. Rezzolla, F. Galeazzi, Mon. Not. R. Astron. Soc. 437, L46 (2014)

    Article  ADS  Google Scholar 

  77. K. Takami, L. Rezzolla, L. Baiotti, Phys. Rev. D 91, 064001 (2015)

    Article  ADS  Google Scholar 

  78. W. Kastaun, F. Galeazzi, Phys. Rev. D 91, 064027 (2015)

    Article  ADS  Google Scholar 

  79. S. Bernuzzi, T. Dietrich, A. Nagar, Phys. Rev. Lett. 115, 091101 (2015)

    Article  ADS  Google Scholar 

  80. C. Palenzuela, S.L. Liebling, D. Neilsen et al., Phys. Rev. D 92, 044045 (2015)

    Article  ADS  Google Scholar 

  81. T. Dietrich, N. Moldenhauer, N.K. Johnson-McDaniel, arXiv:1507.07100 (2015)

  82. K. Dionysopoulou, D. Alic, L. Rezzolla, Phys. Rev. D 92, 084064 (2015)

    Article  ADS  Google Scholar 

  83. R. De Pietri, A. Feo, F. Maione, F. Löffler, arXiv:1509.08804 (2015)

  84. F. Foucart, R. Haas, M.D. Duez, arXiv:1510.06398 (2015)

  85. M. Hempel, J. Schaffner-Bielich, Nucl. Phys. A 837, 210 (2010)

    Article  ADS  Google Scholar 

  86. S. Typel, G. Röpke, T. Klähn, D. Blaschke, H.H. Wolter, Phys. Rev. C 81, 015803 (2010)

    Article  ADS  Google Scholar 

  87. G.M. Harry, LIGO Scientific Collaboration, Class. Quantum Grav. 27, 084006 (2010)

    Article  ADS  Google Scholar 

  88. S. Hild, S. Chelkowski, A. Freise et al., Class. Quantum Grav. 27, 015003 (2010)

    Article  ADS  Google Scholar 

  89. R.C. Tolman, Phys. Rev. 55, 364 (1939)

    Article  ADS  Google Scholar 

  90. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)

    Article  ADS  Google Scholar 

  91. N. Andersson, K.D. Kokkotas, Mon. Not. R. Astron. Soc. 299, 1059 (1998)

    Article  ADS  Google Scholar 

  92. L.-X. Li, B. Paczyński, Astrophys. J. Lett. 507, L59 (1998)

    Article  ADS  Google Scholar 

  93. S.R. Kulkarni, arXiv:astro-ph/0510256 (2005)

  94. B.D. Metzger, G. Martínez-Pinedo, S. Darbha et al., Mon. Not. R. Astron. Soc. 406, 2650 (2010)

    Article  ADS  Google Scholar 

  95. S. Nissanke, M. Kasliwal, A. Georgieva, Astrophys. J. 767, 124 (2013)

    Article  ADS  Google Scholar 

  96. A. Bauswein, S. Goriely, H.-T. Janka, Astrophys. J. 773, 78 (2013)

    Article  ADS  Google Scholar 

  97. B.D. Metzger, E. Berger, Astrophys. J. 746, 48 (2012)

    Article  ADS  Google Scholar 

  98. B.D. Metzger, A. Bauswein, S. Goriely, D. Kasen, Mon. Not. R. Astron. Soc. 446, 1115 (2015)

    Article  ADS  Google Scholar 

  99. K. Hebeler, J.M. Lattimer, C.J. Pethick, A. Schwenk, Phys. Rev. Lett. 105, 161102 (2010)

    Article  ADS  Google Scholar 

  100. C. Constantinou, B. Muccioli, M. Prakash, J.M. Lattimer, Phys. Rev. C 92, 025801 (2015)

    Article  ADS  Google Scholar 

  101. B. Paczynski, Astrophys. J. Lett. 308, L43 (1986)

    Article  ADS  Google Scholar 

  102. D. Eichler, M. Livio, T. Piran, D.N. Schramm, Nature 340, 126 (1989)

    Article  ADS  Google Scholar 

  103. E. Berger, Annu. Rev. Astron. Astrophys. 52, 43 (2014)

    Article  ADS  Google Scholar 

  104. N. Hansen, in Towards a new evolutionary computation. Advances on estimation of distribution algorithms, edited by J. Lozano, P. Larranaga, I. Inza, E. Bengoetxea (Springer, 2006) pp. 75--102

  105. L. Bildsten, C. Cutler, Astrophys. J. 400, 175 (1992)

    Article  ADS  Google Scholar 

  106. C.S. Kochanek, Astrophys. J. 398, 234 (1992)

    Article  ADS  Google Scholar 

  107. D.R. Lorimer, Living Rev. Relativ. 11, 8 (2008)

    Article  ADS  Google Scholar 

  108. J. Isenberg, J. Nester, in General Relativity and Gravitation (Plenum Press, New York, 1980) p. 23

  109. J.R. Wilson, G.J. Mathews, P. Marronetti, Phys. Rev. D 54, 1317 (1996)

    Article  ADS  Google Scholar 

  110. A.R. Bodmer, Phys. Rev. D 4, 1601 (1971)

    Article  ADS  Google Scholar 

  111. E. Witten, Phys. Rev. D 30, 272 (1984)

    Article  ADS  Google Scholar 

  112. Z. Berezhiani, I. Bombaci, A. Drago, F. Frontera, A. Lavagno, Astrophys. J. 586, 1250 (2003)

    Article  ADS  Google Scholar 

  113. I. Bombaci, I. Parenti, I. Vidaña, Astrophys. J. 614, 314 (2004)

    Article  ADS  Google Scholar 

  114. S. Benić, D. Blaschke, D.E. Alvarez-Castillo, T. Fischer, S. Typel, Astron. Astrophys. 577, A40 (2015)

    Article  ADS  Google Scholar 

  115. T. Klähn, T. Fischer, Astrophys. J. 810, 134 (2015)

    Article  ADS  Google Scholar 

  116. A.V. Olinto, Phys. Lett. B 192, 71 (1987)

    Article  ADS  Google Scholar 

  117. G. Lugones, O.G. Benvenuto, H. Vucetich, Phys. Rev. D 50, 6100 (1994)

    Article  ADS  Google Scholar 

  118. M. Herzog, F.K. Röpke, Phys. Rev. D 84, 083002 (2011)

    Article  ADS  Google Scholar 

  119. G. Pagliara, M. Herzog, F.K. Röpke, Phys. Rev. D 87, 103007 (2013)

    Article  ADS  Google Scholar 

  120. A. Drago, G. Pagliara, Phys. Rev. C 92, 045801 (2015)

    Article  ADS  Google Scholar 

  121. C. Alcock, E. Farhi, A. Olinto, Astrophys. J. 310, 261 (1986)

    Article  ADS  Google Scholar 

  122. J. Madsen, Phys. Rev. Lett. 61, 2909 (1988)

    Article  ADS  Google Scholar 

  123. R.R. Caldwell, J.L. Friedman, Phys. Lett. B 264, 143 (1991)

    Article  ADS  Google Scholar 

  124. A. Bauswein, H.-T. Janka, R. Oechslin et al., Phys. Rev. Lett. 103, 011101 (2009)

    Article  ADS  Google Scholar 

  125. J.E. Horvath, L. Paulucci Marinho, arXiv:1504.03365 (2015)

  126. A. Drago, A. Lavagno, G. Pagliara, D. Pigato, Phys. Rev. C 90, 065809 (2014)

    Article  ADS  Google Scholar 

  127. A.W. Steiner, M. Hempel, T. Fischer, Astrophys. J. 774, 17 (2013)

    Article  ADS  Google Scholar 

  128. E.S. Fraga, A. Kurkela, A. Vuorinen, Astrophys. J. Lett. 781, L25 (2014)

    Article  ADS  Google Scholar 

  129. S. Hild, Class. Quantum Grav. 29, 124006 (2012)

    Article  ADS  Google Scholar 

  130. R.X. Adhikari, Rev. Mod. Phys. 86, 121 (2014)

    Article  ADS  Google Scholar 

  131. J. Miller, L. Barsotti, S. Vitale et al., Phys. Rev. D 91, 062005 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Bauswein.

Additional information

Communicated by D. Blaschke

Contribution to the Topical Issue on “Exotic matter in neutron stars” edited by David Blaschke, J¨urgen Schaffner-Bielich, Hans-Josef Schulze.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauswein, A., Stergioulas, N. & Janka, HT. Exploring properties of high-density matter through remnants of neutron-star mergers. Eur. Phys. J. A 52, 56 (2016). https://doi.org/10.1140/epja/i2016-16056-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16056-7

Keywords

Navigation