Advertisement

The scenario of two families of compact stars

Part 1. Equations of state, mass-radius relations and binary systems
  • Alessandro Drago
  • Andrea Lavagno
  • Giuseppe PagliaraEmail author
  • Daniele Pigato
Review
Part of the following topical collections:
  1. Exotic Matter in Neutron Stars

Abstract.

We present several arguments which favor the scenario of two coexisting families of compact stars: hadronic stars and quark stars. Besides the well-known hyperon puzzle of the physics of compact stars, a similar puzzle exists also when considering delta resonances. We show that these particles appear at densities close to twice saturation density and must be therefore included in the calculations of the hadronic equation of state. Such an early appearance is strictly related to the value of the L parameter of the symmetry energy that has been found, in recent phenomenological studies, to lie in the range \(40 < L < 62\) MeV. We discuss also the threshold for the formation of deltas and hyperons for hot and lepton-rich hadronic matter. Similarly to the case of hyperons, also delta resonances cause a softening of the equation of state, which makes it difficult to obtain massive hadronic stars. Quark stars, on the other hand, can reach masses up to \( 2.75 M_{\odot}\) as predicted by perturbative QCD calculations. We then discuss the observational constraints on the masses and the radii of compact stars. The tension between the precise measurements of high masses and the indications of the existence of very compact stellar objects (with radii of the order of 10km) is relieved when assuming that very massive compact stars are quark stars and very compact stars are hadronic stars. Finally, we discuss recent interesting measurements of the eccentricities of the orbits of millisecond pulsars in low mass X-ray binaries. The high values of the eccentricities found in some cases could be explained by assuming that the hadronic star, initially present in the binary system, converts to a quark star due to the increase of its central density.

Keywords

Neutron Star Symmetry Energy Quark Matter Baryon Density Compact Star 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    STAR Collaboration (J. Adams et al.), Nucl. Phys. A 757, 102 (2005) nucl-ex/0501009CrossRefADSGoogle Scholar
  2. 2.
    P. Demorest, T. Pennucci, S. Ransom, M. Roberts, J. Hessels, Nature 467, 1081 (2010)CrossRefADSGoogle Scholar
  3. 3.
    J. Antoniadis, P.C. Freire, N. Wex, T.M. Tauris, R.S. Lynch et al., Science 340, 6131 (2013)CrossRefADSGoogle Scholar
  4. 4.
    H. Chen, M. Baldo, G.F. Burgio, H.J. Schulze, Phys. Rev. D 84, 105023 (2011) arXiv:1107.2497 CrossRefADSGoogle Scholar
  5. 5.
    L. Bonanno, A. Sedrakian, Astron. Astrophys. 539, A16 (2012) arXiv:1108.0559 CrossRefADSGoogle Scholar
  6. 6.
    J.L. Zdunik, P. Haensel, Astron. Astrophys. 551, A61 (2013) arXiv:1211.1231 CrossRefADSGoogle Scholar
  7. 7.
    A. Kurkela, E.S. Fraga, J. Schaffner-Bielich, A. Vuorinen, Astrophys. J. 789, 127 (2014) arXiv:1402.6618 CrossRefADSGoogle Scholar
  8. 8.
    S. Benic, D. Blaschke, D.E. Alvarez-Castillo, T. Fischer, S. Typel, Astron. Astrophys. 577, A40 (2015) arXiv:1411.2856 CrossRefADSGoogle Scholar
  9. 9.
    A. Drago, A. Lavagno, G. Pagliara, Phys. Rev. D 89, 043014 (2014) arXiv:1309.7263 CrossRefADSGoogle Scholar
  10. 10.
    N. Glendenning, S. Moszkowski, Phys. Rev. Lett. 67, 2414 (1991)CrossRefADSGoogle Scholar
  11. 11.
    J.M. Lattimer, Y. Lim, Astrophys. J. 771, 51 (2013) arXiv:1203.4286 CrossRefADSGoogle Scholar
  12. 12.
    M.B. Tsang et al., Phys. Rev. C 86, 015803 (2012)CrossRefADSGoogle Scholar
  13. 13.
    A.W. Steiner, M. Prakash, J.M. Lattimer, P.J. Ellis, Phys. Rep. 411, 325 (2005) nucl-th/0410066CrossRefADSGoogle Scholar
  14. 14.
    A.W. Steiner, M. Hempel, T. Fischer, Astrophys. J. 774, 17 (2013) arXiv:1207.2184 CrossRefADSGoogle Scholar
  15. 15.
    A.R. Raduta, F. Gulminelli, M. Oertel, arXiv:1406.0395 (2014)
  16. 16.
    J. Schaffner, C.B. Dover, A. Gal, C. Greiner, H. Stoecker, Phys. Rev. Lett. 71, 1328 (1993)CrossRefADSGoogle Scholar
  17. 17.
    J. Schaffner, I.N. Mishustin, Phys. Rev. C 53, 1416 (1996)CrossRefADSGoogle Scholar
  18. 18.
    E.E. Zabrodin, I.C. Arsene, J. Bleibel, M. Bleicher, L.V. Bravina et al., J. Phys. G 36, 064065 (2009)CrossRefADSGoogle Scholar
  19. 19.
    M. Hofmann, R. Mattiello, H. Sorge, H. Stoecker, W. Greiner, Phys. Rev. C 51, 2095 (1995)CrossRefADSGoogle Scholar
  20. 20.
    S. Bass, M. Gyulassy, H. Stoecker, W. Greiner, J. Phys. G 25, R1 (1999)CrossRefADSGoogle Scholar
  21. 21.
    A. Lavagno, Phys. Rev. C 81, 044909 (2010)CrossRefADSGoogle Scholar
  22. 22.
    A. Lavagno, D. Pigato, Phys. Rev. C 86, 024917 (2012)CrossRefADSGoogle Scholar
  23. 23.
    H. Huber, F. Weber, M. Weigel, C. Schaab, Int. J. Mod. Phys. E 7, 301 (1998) nucl-th/9711025CrossRefADSGoogle Scholar
  24. 24.
    H. Xiang, G. Hua, Phys. Rev. C 67, 038801 (2003)CrossRefADSGoogle Scholar
  25. 25.
    Y. Chen, H. Guo, Y. Liu, Phys. Rev. C 75, 035806 (2007)CrossRefADSGoogle Scholar
  26. 26.
    Y. Chen, Y. Yuan, Y. Liu, Phys. Rev. C 79, 055802 (2009)CrossRefADSGoogle Scholar
  27. 27.
    T. Schurhoff, S. Schramm, V. Dexheimer, Astrophys. J. 724, L74 (2010)CrossRefADSGoogle Scholar
  28. 28.
    N. Glendenning, Astrophys. J. 293, 470 (1985)CrossRefADSGoogle Scholar
  29. 29.
    D. Kosov, C. Fuchs, B. Martemyanov, A. Faessler, Phys. Lett. B 421, 37 (1998)CrossRefADSGoogle Scholar
  30. 30.
    X.m. Jin, Phys. Rev. C 51, 2260 (1995)CrossRefADSGoogle Scholar
  31. 31.
    E. Oset, L. Salcedo, Nucl. Phys. A 468, 631 (1987)CrossRefADSGoogle Scholar
  32. 32.
    J. Koch, N. Ohtsuka, Nucl. Phys. A 435, 765 (1985)CrossRefADSGoogle Scholar
  33. 33.
    K. Wehrberger, C. Bedau, F. Beck, Nucl. Phys. A 504, 797 (1989)CrossRefADSGoogle Scholar
  34. 34.
    J. O’Connell, R. Sealock, Phys. Rev. C 42, 2290 (1990)CrossRefADSGoogle Scholar
  35. 35.
    W. Alberico, G. Gervino, A. Lavagno, Phys. Lett. B 321, 177 (1994)CrossRefADSGoogle Scholar
  36. 36.
    Y. Horikawa, M. Thies, F. Lenz, Nucl. Phys. A 345, 386 (1980)CrossRefADSGoogle Scholar
  37. 37.
    S. Nakamura, T. Sato, T.S. Lee, B. Szczerbinska, K. Kubodera, Phys. Rev. C 81, 035502 (2010) arXiv:0910.1057 CrossRefADSGoogle Scholar
  38. 38.
    A. Drago, A. Lavagno, G. Pagliara, D. Pigato, Phys. Rev. C 90, 065809 (2014) arXiv:1407.2843 CrossRefADSGoogle Scholar
  39. 39.
    B.J. Cai, F.J. Fattoyev, B.A. Li, W.G. Newton, Phys. Rev. C 92, 015802 (2015)CrossRefADSGoogle Scholar
  40. 40.
    B.A. Li, arXiv:1507.03279 (2015)
  41. 41.
    J. Benlliure et al., JPS Conf. Proc. 6, 020039 (2015)Google Scholar
  42. 42.
    Z.X. Li, G.J. Mao, Y.Z. Zhuo, W. Greiner, Phys. Rev. C 56, 1570 (1997)CrossRefADSGoogle Scholar
  43. 43.
    S. Typel, G. Ropke, T. Klahn, D. Blaschke, H. Wolter, Phys. Rev. C 81, 015803 (2010) arXiv:0908.2344 CrossRefADSGoogle Scholar
  44. 44.
    B.J. Cai, F.J. Fattoyev, B.A. Li, W.G. Newton, Phys. Rev. C 92, 015802 (2015) arXiv:1501.01680 CrossRefADSGoogle Scholar
  45. 45.
    M. Prakash, I. Bombaci, M. Prakash, P.J. Ellis, J.M. Lattimer, R. Knorren, Phys. Rep. 280, 1 (1997) nucl-th/9603042CrossRefADSGoogle Scholar
  46. 46.
    M. Buballa, Phys. Rep. 407, 205 (2005) hep-ph/0402234CrossRefADSGoogle Scholar
  47. 47.
    A. Kurkela, P. Romatschke, A. Vuorinen, Phys. Rev. D 81, 105021 (2010) arXiv:0912.1856 CrossRefADSGoogle Scholar
  48. 48.
    E.S. Fraga, A. Kurkela, A. Vuorinen, Astrophys. J. 781, L25 (2014) arXiv:1311.5154 CrossRefADSGoogle Scholar
  49. 49.
    S. Weissenborn, I. Sagert, G. Pagliara, M. Hempel, J. Schaffner-Bielich, Astrophys. J. 740, L14 (2011)CrossRefADSGoogle Scholar
  50. 50.
    A. Zacchi, R. Stiele, J. Schaffner-Bielich, Phys. Rev. D 92, 4, 045022 (2015)CrossRefGoogle Scholar
  51. 51.
    M. van Kerkwijk, R. Breton, S. Kulkarni, Astrophys. J. 728, 95 (2011)CrossRefADSGoogle Scholar
  52. 52.
    H.J. Lü, B. Zhang, W.H. Lei, Y. Li, P.D. Lasky, Astrophys. J. 805, 89 (2015) arXiv:1501.02589 CrossRefADSGoogle Scholar
  53. 53.
    B. Metzger, D. Giannios, T. Thompson, N. Bucciantini, E. Quataert, Mon. Not. R. Astron. Soc. 413, 2031 (2011)CrossRefADSGoogle Scholar
  54. 54.
    P.D. Lasky, B. Haskell, V. Ravi, E.J. Howell, D.M. Coward, Phys. Rev. D 89, 047302 (2014) arXiv:1311.1352 CrossRefADSGoogle Scholar
  55. 55.
    S. Guillot, M. Servillat, N.A. Webb, R.E. Rutledge, arXiv:1302.0023 (2013)
  56. 56.
    S. Guillot, R.E. Rutledge, Astrophys. J. 796, L3 (2014) arXiv:1409.4306 CrossRefADSGoogle Scholar
  57. 57.
    J.M. Lattimer, A.W. Steiner, arXiv:1305.3242 (2013)
  58. 58.
    C.O. Heinke et al., Mon. Not. R. Astron. Soc. 444, 443 (2014) arXiv:1406.1497 CrossRefADSGoogle Scholar
  59. 59.
    F. Ozel, G. Baym, T. Guver, Phys. Rev. D 82, 101301 (2010) arXiv:1002.3153 CrossRefADSGoogle Scholar
  60. 60.
    L. Titarchuk, N. Shaposhnikov, Astrophys. J. 570, L25 (2002) astro-ph/0203432CrossRefADSGoogle Scholar
  61. 61.
    N. Shaposhnikov, L. Titarchuk, Astrophys. J. 606, L57 (2004) astro-ph/0403488CrossRefADSGoogle Scholar
  62. 62.
    N. Shaposhnikov, L. Titarchuk, F. Haberl, Astrophys. J. 593, L35 (2003) astro-ph/0307215CrossRefADSGoogle Scholar
  63. 63.
    D.A. Leahy, S.M. Morsink, C. Cadeau, Astrophys. J. 672, 1119 (2008) astro-ph/0703287CrossRefADSGoogle Scholar
  64. 64.
    S.M. Morsink, D.A. Leahy, Astrophys. J. 726, 56 (2011) arXiv:0911.0887 [astro-ph.HE]CrossRefADSGoogle Scholar
  65. 65.
    S. Bogdanov, Astrophys. J. 762, 96 (2013) arXiv:1211.6113 CrossRefADSGoogle Scholar
  66. 66.
    J.P.W. Verbiest, M. Bailes, W. van Straten, G.B. Hobbs, R.T. Edwards, R.N. Manchester, N.D.R. Bhat, J.M. Sarkissian, B.A. Jacoby, S.R. Kulkarni, Astrophys. J. 679, 675 (2008) arXiv:0801.2589 CrossRefADSGoogle Scholar
  67. 67.
    V. Hambaryan, R. Neuhaeuser, V. Suleimanov, K. Werner, J. Phys.: Conf. Ser. 496, 012015 (2014)ADSGoogle Scholar
  68. 68.
    D.A. Leahy, S.M. Morsink, Y.Y. Chung, Y. Chou, Astrophys. J. 691, 1235 (2009) arXiv:0806.0824 [astro-ph]CrossRefADSGoogle Scholar
  69. 69.
    M. Burgay et al., Nature 426, 531 (2003) astro-ph/0312071CrossRefADSGoogle Scholar
  70. 70.
    P. Podsiadlowski, J.D.M. Dewi, P. Lesaffre, J.C. Miller, W.G. Newton, J.R. Stone, Mon. Not. R. Astron. Soc. 361, 1243 (2005) astro-ph/0506566CrossRefADSGoogle Scholar
  71. 71.
    F.S. Kitaura, H.T. Janka, W. Hillebrandt, Astron. Astrophys. 450, 345 (2006) astro-ph/0512065CrossRefADSGoogle Scholar
  72. 72.
    B. Knispel et al., Astrophys. J. 806, 140 (2015) arXiv:1504.03684 CrossRefADSGoogle Scholar
  73. 73.
    P.C.C. Freire, T.M. Tauris, Mon. Not. R. Astron. Soc. 438, 86 (2014) arXiv:1311.3478 CrossRefADSGoogle Scholar
  74. 74.
    L. Jiang, X.D. Li, J. Dey, M. Dey, Astrophys. J. 807, 41 (2015) arXiv:1505.04644 CrossRefADSGoogle Scholar
  75. 75.
    J. Rikovska-Stone, P.A.M. Guichon, H.H. Matevosyan, A.W. Thomas, Nucl. Phys. A 792, 341 (2007)CrossRefADSGoogle Scholar
  76. 76.
    M. Oertel, A.F. Fantina, J. Novak, Phys. Rev. C 85, 055806 (2012)CrossRefADSGoogle Scholar
  77. 77.
    G. Colucci, A. Sedrakian, Phys. Rev. C 87, 055806 (2013)CrossRefADSGoogle Scholar
  78. 78.
    L.L. Lopes, D.P. Menezes, Phys. Rev. C 89, 2, 025805 (2014)CrossRefGoogle Scholar
  79. 79.
    S. Banik, M. Hempel, D. Bandyopadhyay, Astrophys. J. Suppl. 214, 22 (2014)CrossRefADSGoogle Scholar
  80. 80.
    E.N.E. van Dalen, G. Colucci, A. Sedrakian, Phys. Lett. B 734, 383 (2014)CrossRefADSGoogle Scholar
  81. 81.
    T. Katayama, K. Saito, arXiv:1410.7166 [nucl-th]
  82. 82.
    M. Oertel, C. Providência, F. Gulminelli, A.R. Raduta, J. Phys. G 42, 075202 (2015)CrossRefADSGoogle Scholar
  83. 83.
    S. Weissenborn, D. Chatterjee, J. Schaffner-Bielich, Phys. Rev. C 85, 065802 (2012)CrossRefADSGoogle Scholar
  84. 84.
    S. Weissenborn, D. Chatterjee, J. Schaffner-Bielich, Nucl. Phys. A 881, 62 (2012) arXiv:1111.6049 CrossRefADSGoogle Scholar
  85. 85.
    I. Bednarek, P. Haensel, J. Zdunik, M. Bejger, R. Manka, arXiv:1111.6942 (2011)
  86. 86.
    M. Baldo, G. Burgio, H. Schulze, Phys. Rev. C 61, 055801 (2000) nucl-th/9912066CrossRefADSGoogle Scholar
  87. 87.
    I. Vidana, D. Logoteta, C. Providencia, A. Polls, I. Bombaci, EPL 94, 11002 (2011) arXiv:1006.5660 CrossRefADSGoogle Scholar
  88. 88.
    H. Djapo, B.J. Schaefer, J. Wambach, Phys. Rev. C 81, 035803 (2010) arXiv:0811.2939 ADSGoogle Scholar
  89. 89.
    D. Lonardoni, A. Lovato, S. Gandolfi, F. Pederiva, Phys. Rev. Lett. 114, 092301 (2015)CrossRefADSGoogle Scholar
  90. 90.
    Y. Yamamoto, T. Furumoto, N. Yasutake, T.A. Rijken, Phys. Rev. C 90, 045805 (2014)CrossRefADSGoogle Scholar
  91. 91.
    D. Psaltis, F. Özel, D. Chakrabarty, Astrophys. J. 787, 136 (2014)CrossRefADSGoogle Scholar
  92. 92.
    A. Bauswein, N. Stergioulas, H.T. Janka, arXiv:1508.05493 (2015)
  93. 93.
    R.B. Wiringa, V. Fiks, A. Fabrocini, Phys. Rev. C 38, 1010 (1988)CrossRefADSGoogle Scholar
  94. 94.
    J. Madsen, Phys. Rev. D 71, 014026 (2005)CrossRefADSGoogle Scholar
  95. 95.
    STAR Collaboration (B.I. Abelev et al.), Phys. Rev. C 76, 011901 (2007) nucl-ex/0511047CrossRefGoogle Scholar
  96. 96.
    C. Greiner, P. Koch, H. Stoecker, Phys. Rev. Lett. 58, 1825 (1987)CrossRefADSGoogle Scholar
  97. 97.
    D.M. Jacobs, G.D. Starkman, B.W. Lynn, Mon. Not. R. Astron. Soc. 450, 3418 (2015) arXiv:1410.2236 CrossRefADSGoogle Scholar
  98. 98.
    L. Paulucci, J.E. Horvath, Phys. Lett. B 733, 164 (2014) arXiv:1405.1777 CrossRefADSGoogle Scholar
  99. 99.
    K. Han, J. Ashenfelter, A. Chikanian, W. Emmet, L.E. Finch, A. Heinz, J. Madsen, R.D. Majka, B. Monreal, J. Sandweiss, Phys. Rev. Lett. 103, 092302 (2009) arXiv:0903.5055 CrossRefADSGoogle Scholar
  100. 100.
    A. Bauswein, H.T. Janka, R. Oechslin, G. Pagliara, I. Sagert et al., Phys. Rev. Lett. 103, 011101 (2009)CrossRefADSGoogle Scholar
  101. 101.
    J.L. Friedman, R.R. Caldwell, Phys. Lett. B 264, 143 (1991)CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alessandro Drago
    • 1
  • Andrea Lavagno
    • 2
  • Giuseppe Pagliara
    • 1
    Email author
  • Daniele Pigato
    • 2
  1. 1.Dip. di Fisica e Scienze della Terra dell’Università di Ferrara and INFN Sez. di FerraraFerraraItaly
  2. 2.Department of Applied Science and TechnologyPolitecnico di Torino and INFN, Sez. di TorinoTorinoItaly

Personalised recommendations