Advertisement

Radial flow in non-extensive thermodynamics and study of particle spectra at LHC in the limit of small (q - 1)

  • Trambak Bhattacharyya
  • Jean Cleymans
  • Arvind Khuntia
  • Pooja Pareek
  • Raghunath SahooEmail author
Regular Article - Theoretical Physics

Abstract.

We expand the Tsallis distribution in a Taylor series of powers of (q - 1), where q is the Tsallis parameter, assuming q is very close to 1. This helps in studying the degree of deviation of transverse momentum spectra and other thermodynamic quantities from a thermalized Boltzmann distribution. After checking thermodynamic consistency, we provide analytical results for the Tsallis distribution in the presence of collective flow up to the first order of (q - 1). The formulae are compared with the experimental data.

Keywords

Large Hadron Collider Transverse Momentum Boltzmann Distribution Transverse Momentum Distribution Thermodynamic Consistency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. Tsallis, J. Stat. Phys. 52, 479 (1988)CrossRefADSMathSciNetzbMATHGoogle Scholar
  2. 2.
    STAR Collaboration (B.I. Abelev et al.), Phys. Rev. C 75, 064901 (2007)Google Scholar
  3. 3.
    PHENIX Collaboration (A. Adare et al.), Phys. Rev. D 83, 052004 (2011)CrossRefGoogle Scholar
  4. 4.
    PHENIX Collaboration (A. Adare et al.), Phys. Rev. C 83, 064903 (2011)CrossRefGoogle Scholar
  5. 5.
    ALICE Collaboration (K. Aamodt et al.), Phys. Lett. B 693, 53 (2010)CrossRefADSGoogle Scholar
  6. 6.
    ALICE Collaboration (K. Aamodt et al.), Eur. Phys. J C 71, 1655 (2011)CrossRefADSGoogle Scholar
  7. 7.
    CMS Collaboration (V. Khachatryan et al.), JHEP 02, 041 (2010)Google Scholar
  8. 8.
    CMS Collaboration (V. Khachatryan et al.), Phys. Rev. Lett. 105, 022002 (2010)CrossRefADSGoogle Scholar
  9. 9.
    ATLAS Collaboration (G. Aad et al.), New J. Phys. 13, 053033 (2011)CrossRefADSGoogle Scholar
  10. 10.
    ALICE Collaboration (B. Abelev et al.), Phys. Rev. Lett. 109, 252301 (2012)CrossRefADSGoogle Scholar
  11. 11.
    I. Bediaga, E.M.F. Curado, J.M. de Miranda, Physica A 286, 156 (2000)CrossRefADSGoogle Scholar
  12. 12.
    G. Wilk, Z. Włodarczyk, Acta Phys. Pol. B 46, 1103 (2015)CrossRefADSGoogle Scholar
  13. 13.
    K. Ürmössy, G.G. Barnaföldi, T.S. Biró, Phys. Lett. B 701, 111 (2011)CrossRefGoogle Scholar
  14. 14.
    K. Ürmössy, G.G. Barnaföldi, T.S. Biró, Phys. Lett. B 718, 125 (2012)CrossRefGoogle Scholar
  15. 15.
    P.K. Khandai, P. Sett, P. Shukla, V. Singh, Int. J. Mod. Phys. A 28, 1350066 (2013)CrossRefADSGoogle Scholar
  16. 16.
    B.-C. Li, Y.-Z. Wang, F.-H. Liu, Phys. Lett. B 725, 352 (2013)CrossRefADSGoogle Scholar
  17. 17.
    L. Marques, J. Cleymans, A. Deppman, Phys. Rev. D 91, 054025 (2015)CrossRefADSGoogle Scholar
  18. 18.
    J. Cleymans, D. Worku, J. Phys. G 39, 025006 (2012)CrossRefADSGoogle Scholar
  19. 19.
    J. Cleymans, D. Worku, Eur. Phys. J. A 48, 160 (2012)CrossRefADSGoogle Scholar
  20. 20.
    J. Cleymans, G.I. Lykasov, A.S. Parvan, A.S. Sorin, D. Worku, Phys. Lett. B 723, 351 (2013)CrossRefADSGoogle Scholar
  21. 21.
    M.D. Azmi, J. Cleymans, J. Phys. G 41, 065001 (2014)CrossRefADSGoogle Scholar
  22. 22.
    Z. Tang, Y. Xu, L. Ruan, G. van Buren, F. Wang, Z. Xu, Phys. Rev. C 79, 051901(R) (2009)CrossRefADSGoogle Scholar
  23. 23.
    Ze-Bo Tang, Li Yi, Ji-Juan Ruan, Ming Shao, Cheng Li, Chin. Phys. Lett. 30, 031201 (2013)CrossRefADSGoogle Scholar
  24. 24.
    T.S. Biró, G. Pürcsell, K. Ürmössy, Eur. Phys. J. A 40, 325 (2009)CrossRefADSGoogle Scholar
  25. 25.
    K. Ürmössy, T.S. Biró, J. Phys. G 36, 064044 (2009)CrossRefGoogle Scholar
  26. 26.
    M. Rybczyński, Z. Włodarczyk, Eur. Phys. J. C 74, 2785 (2014)CrossRefADSGoogle Scholar
  27. 27.
    C. Beck, Physica A 286, 164 (2000)CrossRefADSGoogle Scholar
  28. 28.
    T. Osada, G. Wilk, Phys. Rev. C 77, 044903 (2009)CrossRefADSGoogle Scholar
  29. 29.
    W.M. Alberico, A. Lavagno, P. Quarati, Nucl. Phys. A 680, 94c (2001)CrossRefADSGoogle Scholar
  30. 30.
    J. Cleymans, EPJ Web of Conferences 70, 00009 (2014)CrossRefGoogle Scholar
  31. 31.
    S. Asgarani, B. Mirza, Physica A 37, 513 (2007)CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    P.K. Khandai, P. Sett, P. Shukla, V. Singh, J. Phys. G: Nucl. Part. Phys. 41, 025105 (2014)CrossRefADSGoogle Scholar
  33. 33.
    B. De, Eur. Phys. J. A 50, 138 (2014)CrossRefADSGoogle Scholar
  34. 34.
    K. Ürmössy, T.S. Biró, Phys. Lett. B 689, 14 (2010)CrossRefADSGoogle Scholar
  35. 35.
    D. Thakur, S. Tripathy, P. Garg, R. Sahoo, J. Cleymans, arXiv:1601.05223
  36. 36.
    G. Wilk, Z. Włodarczyk, Phys. Rev. C 79, 054903 (2009)CrossRefADSGoogle Scholar
  37. 37.
    G. Wilk, Z. Włodarczyk, Eur. Phys. J. A 40, 299 (2009)CrossRefADSGoogle Scholar
  38. 38.
    M. Shao, L. Yi, Z. Tang, H. Chen, C. Li, Z. Xu, J. Phys. G 37, 085104 (2010)CrossRefADSGoogle Scholar
  39. 39.
    B. De, S. Bhattacharyya, G. Sau, S.K. Biswas, Int. J. Mod. Phys. E 16, 1687 (2007)CrossRefADSGoogle Scholar
  40. 40.
  41. 41.
    H. Hamagaki, in Perspectives of Heavy-Ion Physics, edited by K. Yoshide, S. Kubono, I. Tanihata, C. Signorini (World Scientific Publishing Co. Pte. Ltd., Singapore, 2002) p. 596224Google Scholar
  42. 42.
    M. Biyajima, T. Mizoguchi, N. Nakajima, N. Suzuki, G. Wilk, Eur. Phys. J. C 48, 597 (2006)CrossRefADSGoogle Scholar
  43. 43.
    T.S. Biró, G. Barnaföldi, P. Ván, Physica A 417, 215 (2015)CrossRefADSGoogle Scholar
  44. 44.
    T.S. Biró, P. Ván, G. Barnaföldi, K. Ürmössy, Entropy 16, 6497 (2014)CrossRefADSGoogle Scholar
  45. 45.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, 1972)Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Trambak Bhattacharyya
    • 1
  • Jean Cleymans
    • 2
  • Arvind Khuntia
    • 1
  • Pooja Pareek
    • 1
  • Raghunath Sahoo
    • 1
    Email author
  1. 1.Discipline of Physics, School of Basic SciencesIndian Institute of Technology IndoreSimrolIndia
  2. 2.UCT-CERN Research Centre and Department of PhysicsUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations