Advertisement

Angle-integrated measurements of the 26Al (d, n)27Si reaction cross section: a probe of spectroscopic factors and astrophysical resonance strengths

  • A. Kankainen
  • P. J. Woods
  • F. Nunes
  • C. Langer
  • H. Schatz
  • V. Bader
  • T. Baugher
  • D. Bazin
  • B. A. Brown
  • J. Browne
  • D. T. Doherty
  • A. Estrade
  • A. Gade
  • A. Kontos
  • G. Lotay
  • Z. Meisel
  • F. Montes
  • S. Noji
  • G. Perdikakis
  • J. Pereira
  • F. Recchia
  • T. Redpath
  • R. Stroberg
  • M. Scott
  • D. Seweryniak
  • J. Stevens
  • D. Weisshaar
  • K. Wimmer
  • R. Zegers
Open Access
Regular Article - Experimental Physics

Abstract.

Measurements of angle-integrated cross sections to discrete states in 27Si have been performed studying the 26Al (d, n) reaction in inverse kinematics by tagging states by their characteristic \( \gamma\) -decays using the GRETINA array. Transfer reaction theory has been applied to derive spectroscopic factors for strong single-particle states below the proton threshold, and astrophysical resonances in the 26Al (p,\( \gamma\)) 27Si reaction. Comparisons are made between predictions of the shell model and known characteristics of the resonances. Overall very good agreement is obtained, indicating this method can be used to make estimates of resonance strengths for key reactions currently largely unconstrained by experiment.

Keywords

Reaction Cross Section Inverse Kinematic Spectroscopic Factor Radioactive Beam Resonance Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. Iliadis et al., Astrophys. J. Suppl. Ser. 142, 105 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    W.A. Mahoney, J.C. Ling, A.S. Jacobson, R.E. Lingenfelter, Astrophys. J. 262, 742 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    R. Diehl et al., Nature 439, 45 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    S. Woosley, A. Heger, Phys. Rep. 442, 269 (2007) The Hans Bethe Centennial Volume 1906--2006ADSCrossRefGoogle Scholar
  5. 5.
    T. Rauscher, A. Heger, R.D. Hoffman, S.E. Woosley, Astrophys. J. 576, 323 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    R.B. Vogelaar, PhD thesis, California Institute of Technology, 1989Google Scholar
  7. 7.
    C. Ruiz et al., Phys. Rev. Lett. 96, 252501 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    L. Buchmann et al., Nucl. Phys. A 415, 93 (1984)ADSCrossRefGoogle Scholar
  9. 9.
    G. Lotay et al., Phys. Rev. Lett. 102, 162502 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    G. Lotay et al., Phys. Rev. C 84, 035802 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    I.-Y. Lee, Nucl. Phys. A 520, c641 (1990) Nuclear Structure in the NinetiesADSCrossRefGoogle Scholar
  12. 12.
    R.V.F. Janssens, F.S. Stephens, Nucl. Phys. News Int. 6, 9 (1996)CrossRefGoogle Scholar
  13. 13.
    M. Wang et al., Chin. Phys. C 36, 1603 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    R.B. Vogelaar et al., Phys. Rev. C 53, 1945 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    V. Margerin et al., Phys. Rev. Lett. 115, 062701 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    S.D. Pain et al., Phys. Rev. Lett. 114, 212501 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    P.N. Peplowski et al., Phys. Rev. C 79, 032801 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    D. Morrissey et al., Nucl. Instrum. Methods Phys. Res. B 204, 90 (2003) 14th International Conference on Electromagnetic Isotope Separators and Techniques Related to their ApplicationsADSCrossRefGoogle Scholar
  19. 19.
    S. Paschalis et al., Nucl. Instrum. Methods Phys. Res. A 709, 44 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    L.A. Riley, 2014, UCGretina GEANT4, Ursinus College, unpublishedGoogle Scholar
  21. 21.
    D. Bazin et al., Nucl. Instrum. Methods Phys. Res. B 204, 629 (2003) 14th International Conference on Electromagnetic Isotope Separators and Techniques Related to their ApplicationsADSCrossRefGoogle Scholar
  22. 22.
    M.S. Basunia, Nucl. Data Sheets 112, 1875 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    R.C. Johnson, P.C. Tandy, Nucl. Phys. A 235, 56 (1974)ADSCrossRefGoogle Scholar
  24. 24.
    F.M. Nunes, A. Deltuva, Phys. Rev. C 84, 034607 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    R.L. Varner et al., Phys. Rep. 201, 57 (1991)ADSCrossRefGoogle Scholar
  26. 26.
    R.V. Reid, Ann. Phys. 50, 411 (1968)ADSCrossRefGoogle Scholar
  27. 27.
    M.T.J. Tostevin, M. Igarashi, N. Kishida, University of Surrey modified version of the code TWOFNR, private communicationGoogle Scholar
  28. 28.
    I. Thompson, Comput. Phys. Rep. 7, 167 (1988)ADSCrossRefGoogle Scholar
  29. 29.
    F.M. Nunes, A. Deltuva, J. Hong, Phys. Rev. C 83, 034610 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    B.A. Brown, W.A. Richter, Phys. Rev. C 74, 034315 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    W. Ormand, B. Brown, Nucl. Phys. A 491, 1 (1989)ADSCrossRefGoogle Scholar
  32. 32.
    W.A. Richter, B.A. Brown, A. Signoracci, M. Wiescher, Phys. Rev. C 83, 065803 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    W.A. Richter, B.A. Brown, A. Signoracci, M. Wiescher, Phys. Rev. C 84, 059802 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    W.A. Richter, B.A. Brown, Phys. Rev. C 85, 045806 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    W.A. Richter, B.A. Brown, Phys. Rev. C 87, 065803 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    B.A. Brown, W.A. Richter, C. Wrede, Phys. Rev. C 89, 062801 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    B. Brown, W. Rae, Nucl. Data Sheets 120, 115 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    E.K. Warburton, B.A. Brown, Phys. Rev. C 46, 923 (1992)ADSCrossRefGoogle Scholar
  39. 39.
    E.K. Warburton, J.A. Becker, B.A. Brown, Phys. Rev. C 41, 1147 (1990)ADSCrossRefGoogle Scholar
  40. 40.
    D.T. Doherty et al., Phys. Rev. Lett. 108, 262502 (2012)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • A. Kankainen
    • 1
  • P. J. Woods
    • 1
  • F. Nunes
    • 2
    • 3
    • 4
  • C. Langer
    • 2
    • 4
  • H. Schatz
    • 2
    • 3
    • 4
  • V. Bader
    • 2
    • 3
  • T. Baugher
    • 2
  • D. Bazin
    • 2
  • B. A. Brown
    • 2
    • 3
    • 4
  • J. Browne
    • 2
    • 3
    • 4
  • D. T. Doherty
    • 1
  • A. Estrade
    • 1
  • A. Gade
    • 2
    • 3
  • A. Kontos
    • 2
  • G. Lotay
    • 1
  • Z. Meisel
    • 2
    • 3
    • 4
  • F. Montes
    • 2
    • 4
  • S. Noji
    • 2
  • G. Perdikakis
    • 4
    • 5
  • J. Pereira
    • 2
    • 4
  • F. Recchia
    • 2
  • T. Redpath
    • 5
  • R. Stroberg
    • 2
    • 3
  • M. Scott
    • 2
    • 3
  • D. Seweryniak
    • 6
  • J. Stevens
    • 2
    • 4
  • D. Weisshaar
    • 2
  • K. Wimmer
    • 5
  • R. Zegers
    • 2
    • 3
    • 4
  1. 1.University of EdinburghEdinburghUK
  2. 2.National Superconducting Cyclotron LaboratoryMichigan State UniversityEast LansingUSA
  3. 3.Department of Physics and AstronomyMichigan State UniversityEast LansingUSA
  4. 4.JINA Center for the Evolution of the ElementsMichigan State UniversityEast LansingUSA
  5. 5.Central Michigan UniversityMount PleasantUSA
  6. 6.Argonne National LaboratoryArgonneUSA

Personalised recommendations