Skip to main content
Log in

Improving neutronics simulations and uncertainties via a selection of nuclear data

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

This work presents a novel approach to improve neutronics simulations, as in the case of criticality calculations, by simply combining the results of a limited set of random evaluations. Another outcome of this work is to lower uncertainties due to nuclear data by integrating the information from criticality benchmarks into the neutronics simulations scheme. Examples are presented for the 239Pu nuclear data and calculations of criticality benchmarks and a MOX fuel pincell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Briggs (Editor), International Handbook of evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)03/I, Organisation for Economic Co-operation and Development, Nuclear Energy Agency (2004)

  2. J.F. Breismeister, MCNP -- A General monte Carlo N-Particle Transport Code, Version 4C, Los Alamos National Laboratory, Report LA-13709-M, April (2000)

  3. M. Chadwick et al., Nucl. Data Sheets 112, 2887 (2011)

    Article  ADS  Google Scholar 

  4. K. Shibata et al., J. Nucl. Sci. Technol. 48, 1 (2011)

    Article  ADS  Google Scholar 

  5. Z.G. Ge, Y.X. Zhuang, T.J. Liu, J.S. Zhang, H.C. Wu, Z.X. Zhao, H.H. Xia, J. Kor. Phys. Soc. 59, 1052 (2011)

    Article  Google Scholar 

  6. The JEFF-3.2 library, available at the NEA Databank, www.oecd-nea.org/dbdata/jeff/

  7. A.J. Koning, D. Rochman, Nucl. Data Sheets 113, 2841 (2012)

    Article  ADS  Google Scholar 

  8. A.J. Koning, D. Rochman, Ann. Nucl. Energy 35, 2024 (2008)

    Article  Google Scholar 

  9. D. Rochman, A.J. Koning, Nucl. Sci. Eng. 169, 68 (2011)

    Article  Google Scholar 

  10. R.E. MacFarlane, A.C. Kahler, Nucl. Data Sheets 111, 2739 (2010)

    Article  ADS  Google Scholar 

  11. D.F. DaCruz, D. Rochman, A.J. Koning, Nucl. Technol. 185, 174 (2014)

    Google Scholar 

  12. H. Sjostrand, E. Alhassan, J. Duan, C. Gustavsson, A.J. Koning, S. Pomp, D. Rochman, M. Osterlund, Nucl. Data Sheets 118, 527 (2014)

    Article  ADS  Google Scholar 

  13. S.C. van der Marck, Nucl. Data Sheets 113, 2935 (2012)

    Article  ADS  Google Scholar 

  14. D. Rochman, A.J. Koning, Nucl. Sci. Eng. 170, 265 (2012)

    Article  Google Scholar 

  15. P. Helgesson, D. Rochman, H. Sjostrand, E. Alhassan, A.J. Koning, Nucl. Sci. Eng. 177, 321 (2014)

    Article  Google Scholar 

  16. J. Leppanen, PSG2/Serpent -- A Continuous-energy Monte Carlo Reactor Physics Burnup Calculation Code, VTT Technical Research Centre of Finland, Finland, http://montecarlo.vtt.fi (2010)

  17. G. Shiba, Y. Kawamoto, M. Tsuji, T. Narabayashi, Ann. Nucl. Energy 75, 395 (2015)

    Article  Google Scholar 

  18. T. Zhu, A. Vasiliev, F. Ferroukhi, A. Pautz, NUSS-RF: Stochastic Sampling-Based Tool for Nuclear Data Sensitivity and Uncertainty Quantification, in Proceeding of the International Conference Reactor Physics, PHYSOR2014, Kyoto, Japan, September 28, October 3, 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Rochman.

Additional information

Communicated by F. Gulminelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rochman, D., Koning, A.J. & van der Marck, S.C. Improving neutronics simulations and uncertainties via a selection of nuclear data. Eur. Phys. J. A 51, 182 (2015). https://doi.org/10.1140/epja/i2015-15182-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15182-0

Keywords

Navigation