Fission modelling with FIFRELIN

  • Olivier LitaizeEmail author
  • Olivier Serot
  • Léonie Berge
Regular Article - Theoretical Physics
Part of the following topical collections:
  1. Perspectives on Nuclear Data for the Next Decade


The nuclear fission process gives rise to the formation of fission fragments and emission of particles \( (n,\gamma , e^{-})\) . The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the scission neutrons. Several efforts have already been made to replace macroscopic ingredients and phenomenology by microscopic ingredients provided in various nuclear parameter libraries such as electric dipole photon strength functions or HFB level densities. First results relative to theses aspects are presented in this work.


Level Density Fragment Mass Neutron Emission Gamma Emission Gamma Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    V.F. Weisskopf, Phys. Rev. 52, 295 (1937)ADSCrossRefGoogle Scholar
  2. 2.
    S. Lemaire, P. Talou, T. Kawano, M.B. Chadwick, D.G. Madland, Phys. Rev. C 72, 024601 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    S. Lemaire, P. Talou, T. Kawano, M.B. Chadwick, D.G. Madland, Phys. Rev. C 73, 014602 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    J. Randrup, R. Vogt, Phys. Rev. C 80, 024601 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    K.-H. Schmidt, B. Jurado, Phys. Rev. Lett. 104, 212501 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    O. Litaize, O. Serot, Phys. Rev. C 82, 054616 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    K.-H. Schmidt, B. Jurado, Phys. Rev. C 83, 061601 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    P. Talou, B. Becker, T. Kawano, M.B. Chadwick, Y. Danon, Phys. Rev. C 83, 064612 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    R. Vogt, J. Randrup, D.A. Brown, M.A. Descalle, W.E. Ormand, Phys. Rev. C 85, 024608 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    D. Regnier, O. Litaize, O. Serot, Phys. Proc. 31, 59 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952)ADSCrossRefGoogle Scholar
  12. 12.
    B. Becker, P. Talou, T. Kawano, Y. Danon, I. Stetcu, Phys. Rev. C 87, 014617 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    D. Regnier, O. Litaize, O. Serot, Phys. Proc. 47, 47 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    U. Brosa, S. Grossmann, A. Muller, Phys. Rep. 197, 167 (1990)ADSCrossRefGoogle Scholar
  15. 15.
    N. Varapai, F.-J. Hambsch, S. Oberstedt, O. Serot, G. Barreau, N. Kornilov, S. Zeinalov, in Proceedings of the International Workshop on Nuclear Fission and Fission Product Spectroscopy, edited by G. Fioni, Vol. 447 (Cadarache, France, 2005) p. 369Google Scholar
  16. 16.
    F.-J. Hambsch, H.-H. Knitter, C. Budtz-Jorgensen, J.-P. Theobald, Nucl. Phys. A 491, 56 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    C. Wagemans, E. Allaert, A. Deruytter, R. Barthélémy, P. Schillebeeckx, Phys. Rev. C 30, 218 (1984)ADSCrossRefGoogle Scholar
  18. 18.
    L. Demattè, PhD Thesis, University of Gent, Belgium (1997)Google Scholar
  19. 19.
    A.C. Wahl, At. Data Nucl. Data Tables 39, 1 (1988)ADSCrossRefGoogle Scholar
  20. 20.
    J.P. Bocquet, R. Brissot, Nucl. Phys. A 502, 213c (1989)ADSCrossRefGoogle Scholar
  21. 21.
    H. Naik, S.P. Dange, R.J. Singh, S.B. Manohar, Nucl. Phys. A 612, 143 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    H. Naik, R.J. Singh, R.H. Iyer, J. Phys. G: Nucl. Part. Phys. 30, 107 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    O. Litaize, O. Serot, D. Regnier, S. Theveny, S. Onde, Phys. Proc. 31, 51 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    F. Gönnenwein, in Proceedings of Seminar on Fission, edited by C. Wagemans, Vol. 3 (Corsendonk Priory, Belgium, 2007)Google Scholar
  25. 25.
    S. Hilaire, M. Girod, Eur. Phys. J. A 33, 237 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    A.H. Wapstra, G. Audi, C. Thibault, Nucl. Phys. A 729, 129 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43, 1446 (1965)ADSCrossRefGoogle Scholar
  29. 29.
    W.D. Myers, W.J. Swiatecki, Nucl. Phys. A 601, 141 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    P. Moller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    F. Becvar, Nucl. Instrum. Methods Phys. Res. A 417, 434 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    R. Capote et al., Nucl. Data Sheets 110, 3107 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    D. Regnier, O. Litaize, O. Serot, to be published in Comput. Phys. CommunGoogle Scholar
  34. 34.
    A.J. Koning, Proceedings of the International Conference on Nuclear Data for Science and Technology - ND2007, edited by O. Bersillon (Nice, France, 2007) p. 211Google Scholar
  35. 35.
    Q. Ducasse, private communicationGoogle Scholar
  36. 36.
    E. Khan et al., Nucl. Phys. A 694, 103 (2001)ADSCrossRefGoogle Scholar
  37. 37.
    S. Goriely, E. Khan, Nucl. Phys. A 706, 217 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    D. Regnier, PhD Thesis, University of Grenoble, France (2013)Google Scholar
  39. 39.
    C. Wagemans, The Nuclear Fission Process (CRC Press, 1991) p. 480Google Scholar
  40. 40.
    A.S. Vorobyev, V.N. Dushin, F.-J. Hambsch, V.A. Jakolev, V.A. Kalinin, A.B. Laptev, B.F. Petrov, O.A. Shcherbakov, in Proceedings of the International Conference on Nuclear Data for Science and Technology ND2004, edited by R.C. Haight (Santa Fe, USA, 2004) p. 613Google Scholar
  41. 41.
    K. Nishio, Y. Nakagome, H. Yamamoto, I. Kimura, Nucl. Phys. A 632, 540 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    C. Budtz-Jørgensen, H.H. Knitter, Nucl. Phys. A 490, 307 (1988)ADSCrossRefGoogle Scholar
  43. 43.
    R.L. Walsh, J.W. Boldeman, Nucl. Phys. A 276, 189 (1977)ADSCrossRefGoogle Scholar
  44. 44.
    F.-J. Hambsch, private communicationGoogle Scholar
  45. 45.
    E.E. Maslin, A.L. Rodgers, W.G.F. Core, Phys. Rev. 164, 1920 (1967)ADSCrossRefGoogle Scholar
  46. 46.
    O.A. Batenkov et al., AIP Conf. Proc. 769, 1003 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    A. Vorobyev, O. Shcherbakov, A. Gagarski, G. Valaski, G. Petrov, EPJ Web of Conferences 8, 03004 (2010)CrossRefGoogle Scholar
  48. 48.
    W. Mannhart, in Properties of Neutron Sources, Report IAEA-TECDOC-410 (1987) p. 158Google Scholar
  49. 49.
    N. Kornilov, F.-J. Hambsch, I. Fabry, S. Oberstedt, T. Belgya, Z. Kis, L. Szentmiklosi, S. Simakov, Nucl. Sci. Eng. 165, 117 (2010)CrossRefGoogle Scholar
  50. 50.
    B.I. Starostov, V.N. Nefedov, A.A. Boytzov, Proccedings of the All Union Conference on Neutron Physics, Vol. 2 (Kiev, USSR, 1983) p. 290Google Scholar
  51. 51.
    V.N. Nefedov, B.I. Starostov, A.A. Boytzov, Proccedings of the All Union Conference on Neutron Physics, Vol. 2 (Kiev, USSR, 1983) p. 285Google Scholar
  52. 52.
    A. Lajtai, J. Kecskemeti, J. Safar, P.P. Dyachenko, V.M. Piksaikin, Proccedings of the Conference on Nuclear Data for Basic and Applied Sciences, Vol. 1 (Santa Fe, USA, 1985) p. 613Google Scholar
  53. 53.
    J. Terrell, Phys. Rev. 113, 527 (1959)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    D.L. Hill, J.A. Wheeler, Phys. Rev. 89, 1102 (1953)ADSCrossRefGoogle Scholar
  55. 55.
    A. Mastsumoto, H. Taninaka, K. Hashimoto, T. Ohsawa, J. Nucl. Sci. Technol. 49, 782 (2012)CrossRefGoogle Scholar
  56. 56.
    T. Ohsawa, in IAEA Report INDC(NDS)-0541 (2009) p. 71Google Scholar
  57. 57.
    H. Märten, A. Ruben, Sov. At. Ener. 69, 583 (1990)CrossRefGoogle Scholar
  58. 58.
    T.N. Taddeucci et al., Nucl. Data Sheets 123, 135 (2015)ADSCrossRefGoogle Scholar
  59. 59.
    P. Glässel, R. Schmid-Fabian, D. Schwalm, D. Habs, H.U.V. Helmolt, Nucl. Phys. A 502, 315c (1989)ADSCrossRefGoogle Scholar
  60. 60.
    F. Pleasonton, R.L. Ferguson, H.W. Schmitt, Phys. Rev. C 6, 1023 (1972)ADSCrossRefGoogle Scholar
  61. 61.
    O. Serot, O. Litaize, D. Regnier, Phys. Proc. 59, 132 (2014)ADSCrossRefGoogle Scholar
  62. 62.
    I. Stetcu, P. Talou, T. Kawano, M. Jandel, Phys. Rev. C 90, 024617 (2014)ADSCrossRefGoogle Scholar
  63. 63.
    L. Thulliez, private communication (2015)Google Scholar
  64. 64.
    R. Billnert, F.-J. Hambsch, A. Oberstedt, S. Oberstedt, Phys. Rev. C 87, 024601 (2013)ADSCrossRefGoogle Scholar
  65. 65.
    V.V. Verbinski, H. Weber, R.E. Sund, Phys. Rev. C 7, 1173 (1973)ADSCrossRefGoogle Scholar
  66. 66.
    A. Chyzh, C.Y. Wu, E. Kwan, R.A. Henderson, J.M. Gostic, T.A. Bredeweg, R.C. Haight, A.C. Hayes-Sterbenz, M. Jandel, J.M. O’Donnell, J.L. Ullmann, Phys. Rev. C 85, 0216011 (2012)CrossRefGoogle Scholar
  67. 67.
    R.W. Peelle, F.C. Maienschein, Phys. Rev. C 3, 373 (1971)ADSCrossRefGoogle Scholar
  68. 68.
    A. Oberstedt, T. Belgya, R. Billnert, R. Borcea, T. Brys, W. Geerts, A. Gook, F.-J. Hambsch, Z. Kis, T. Martinez, S. Oberstedt, L. Szentmiklosi, K. Takacs, M. Vidali, Phys. Rev. C 87, 051602 (2013)ADSCrossRefGoogle Scholar
  69. 69.
    R. Brun, F. Rademakers, Nucl. Instrum. Methods Phys. Res. A 389, 81 (1997)ADSCrossRefGoogle Scholar
  70. 70.
    D. Doré, F. Farget, F.-R. Lecolley, G. Lehaut, T. Materna, J. Pancin, S. Panebianco, Th. Papaevangelou, EPJ Web of Conferences 62, 05005 (2013)CrossRefGoogle Scholar
  71. 71.
    J. Taieb et al., Int. J. Mod. Phys. E 18, 767 (2009)ADSCrossRefGoogle Scholar
  72. 72.
    A. Gook, F.-J. Hambsch, M. Vidali, Phys. Rev. C 90, 064611 (2014)ADSCrossRefGoogle Scholar
  73. 73.
    R. Billnert, A. Oberstedt, S. Oberstedt, Phys. Proc. 59, 17 (2014)ADSCrossRefGoogle Scholar
  74. 74.
    A. Oberstedt, R. Billnert, S. Oberstedt, Phys. Proc. 59, 24 (2014)ADSCrossRefGoogle Scholar
  75. 75.
    J.N. Wilson, M. Leblois, P. Halipre, S. Oberstedt, A. Oberstedt, Phys. Proc. 59, 31 (2014)ADSCrossRefGoogle Scholar
  76. 76.
    M. Leblois, J.N. Wilson, P. Halipre, B. Leniau, I. Matea, A. Oberstedt, S. Oberstedt, D. Verney, Phys. Proc. 59, 37 (2014)ADSCrossRefGoogle Scholar
  77. 77.
    M. Jandel et al., Phys. Proc. 59, 101 (2014)ADSCrossRefGoogle Scholar
  78. 78.
    Y. Aritomo, Proceedings of Nuclear Fission and Structure of Exotic Nuclei - ASRC (Tokai, Japan, 2014)Google Scholar
  79. 79.
    A.J. Sierk, LANL Report LA-UR-14-27056 (2014)Google Scholar
  80. 80.
    A. Blanc, in Proceedings of Symposium on Capture Gamma-Ray Spectroscopy and Related Topics CGC15 (Dresden, Germany, 2014)Google Scholar
  81. 81.
    G. Kessedjian, A. Chebboubi, H. Faust, U. Köster, T. Materna, C. Sage, O. Serot, EPJ Web of Conferences 42, 01007 (2013)CrossRefGoogle Scholar
  82. 82.
    A. Blanc et al., Nucl. Instrum. Methods Phys. Res. B 317, 333 (2013)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.CEA, DEN, DER, SPRCSaint Paul Lez DuranceFrance

Personalised recommendations