Skip to main content

Advertisement

Log in

GEANT4 simulations of the n_TOF spallation source and their benchmarking

The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Neutron production and transport in the spallation target of the n_TOF facility at CERN has been simulated with GEANT4. The results obtained with different models of high-energy nucleon-nucleus interaction have been compared with the measured characteristics of the neutron beam, in particular the flux and its dependence on neutron energy, measured in the first experimental area. The best agreement at present, within 20% for the absolute value of the flux, and within few percent for the energy dependence in the whole energy range from thermal to 1 GeV, is obtained with the INCL++ model coupled with the GEANT4 native de-excitation model. All other available models overestimate by a larger factor, of up to 70%, the n_TOF neutron flux. The simulations are also able to accurately reproduce the neutron beam energy resolution function, which is essentially determined by the moderation time inside the target/moderator assembly. The results here reported provide confidence on the use of GEANT4 for simulations of spallation neutron sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Käppeler et al., Rev. Mod. Phys. 83, 157 (2011)

    Article  ADS  Google Scholar 

  2. N. Colonna et al., Energy Environ. Sci. 3, 1910 (2010)

    Article  Google Scholar 

  3. https://neutrons.ornl.gov/sns

  4. https://ntof-exp.web.cern.ch/ntof-exp/

  5. http://www.isis.stfc.ac.uk/

  6. http://j-parc.jp/index-e.html

  7. http://europeanspallationsource.se/

  8. http://csns.ihep.ac.cn/english/

  9. D.B. Pelowitz (Editor), MCNPX User’s Manual, Version 2.7.0, Los Alamos National Laboratory report, LA-CP-11-00438 (2011)

  10. A. Ferrari, P.R. Sala, A. Fassò, J. Ranft, CERN-2005-10 (2005) INFN/TC_05/11, SLAC-R-773

  11. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)

    Article  ADS  Google Scholar 

  12. P. Zugec et al., Nucl. Instrum. Methods A 760, 57 (2014)

    Article  ADS  Google Scholar 

  13. The n_TOF Collaboration, Eur. Phys. J. A 49, 27 (2013)

    Article  Google Scholar 

  14. The n_TOF Collaboration, Eur. Phys. J. A 49, 156 (2013)

    Article  Google Scholar 

  15. M.A. Cortés-Giraldo, in preparation

  16. B. Andersson et al., Nucl. Phys. B 281, 289 (1987)

    Article  ADS  Google Scholar 

  17. B. Nilsson et al., Comput. Phys. Commun. 43, 387 (1987)

    Article  ADS  Google Scholar 

  18. S. Lo Meo et al., Nucl. Phys. A 993, 43 (2015)

    Article  ADS  Google Scholar 

  19. A. Boudard et al., Phys. Rev. C 87, 014606 (2013)

    Article  ADS  Google Scholar 

  20. D. Mancusi et al., Phys. Rev. C 90, 054602 (2014)

    Article  ADS  Google Scholar 

  21. S. Leray et al., J. Korean Phys. Soc. 59, 791 (2011)

    Article  Google Scholar 

  22. A. Kelic, Report INDC(NDC)-0530 (2008) 181

  23. http://www-nds.iaea.org/spallations

  24. A. Boudard et al., Phys. Rev. C 66, 044615 (2002)

    Article  ADS  Google Scholar 

  25. S. Pedoux, PhD thesis, University of Liège, Belgium (2011)

  26. S. Pedoux, J. Cugnon, Nucl. Phys. A 866, 16 (2011)

    Article  ADS  Google Scholar 

  27. J.M. Quesada et al., Prog. Nucl. Sci. Technol. 2, 936 (2011)

    Article  Google Scholar 

  28. A. Heikkinen et al., J. Phys. Conf. Ser. 119, 032024 (2008)

    Article  ADS  Google Scholar 

  29. M.B. Chadwick et al., Nucl. Data Sheets 107, 2931 (2006)

    Article  ADS  Google Scholar 

  30. M.B. Chadwick et al., Nucl. Data Sheets 112, 2887 (2011)

    Article  ADS  Google Scholar 

  31. E. Mendoza, D. Cano-Ott, T. Koi, C. Guerrero, IEEE Trans. Nucl. Sci. 61, 2357 (2014)

    Article  ADS  Google Scholar 

  32. http://irfu.cea.fr/Sphn/Spallation/physlist.html

  33. GEANT4 Physics Reference and User Manuals at http://geant4.cern.ch

  34. The n_TOF Collaboration, Nucl. Instrum. Methods A 532, 622 (2004)

    Article  Google Scholar 

  35. P. Schillebeeckx et al., Nucl. Data Sheet 113, 3054 (2012)

    Article  ADS  Google Scholar 

  36. N.M. Larson, Updated Users Guide for SAMMY: Multilevel $R$-matrix Fits to Neutron Data Using Bayes Equations, SAMMY Computer Code, Report No. ORNL/TM-9179/R7, Oak Ridge National Laboratory, 2008

  37. C. Massimi et al., Phys. Rev. C 81, 044616 (2010)

    Article  ADS  Google Scholar 

  38. J. Pancin et al., Nucl. Instrum. Methods A 524, 102 (2004)

    Article  ADS  Google Scholar 

  39. D. Mancusi, in preparation

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to S. Lo Meo.

Additional information

Communicated by A. Gade

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo Meo, S., Cortés-Giraldo, M.A., Massimi, C. et al. GEANT4 simulations of the n_TOF spallation source and their benchmarking. Eur. Phys. J. A 51, 160 (2015). https://doi.org/10.1140/epja/i2015-15160-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15160-6

Keywords

Navigation