GEANT4 simulations of the n_TOF spallation source and their benchmarking

  • S. Lo Meo
  • M. A. Cortés-Giraldo
  • C. Massimi
  • J. Lerendegui-Marco
  • M. Barbagallo
  • N. Colonna
  • C. Guerrero
  • D. Mancusi
  • F. Mingrone
  • J. M. Quesada
  • M. Sabate-Gilarte
  • G. Vannini
  • V. Vlachoudis
  • The n_TOF Collaboration
Special Article - Tools for Experiment and Theory

Abstract.

Neutron production and transport in the spallation target of the n_TOF facility at CERN has been simulated with GEANT4. The results obtained with different models of high-energy nucleon-nucleus interaction have been compared with the measured characteristics of the neutron beam, in particular the flux and its dependence on neutron energy, measured in the first experimental area. The best agreement at present, within 20% for the absolute value of the flux, and within few percent for the energy dependence in the whole energy range from thermal to 1 GeV, is obtained with the INCL++ model coupled with the GEANT4 native de-excitation model. All other available models overestimate by a larger factor, of up to 70%, the n_TOF neutron flux. The simulations are also able to accurately reproduce the neutron beam energy resolution function, which is essentially determined by the moderation time inside the target/moderator assembly. The results here reported provide confidence on the use of GEANT4 for simulations of spallation neutron sources.

References

  1. 1.
    F. Käppeler et al., Rev. Mod. Phys. 83, 157 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    N. Colonna et al., Energy Environ. Sci. 3, 1910 (2010)CrossRefGoogle Scholar
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
  8. 8.
  9. 9.
    D.B. Pelowitz (Editor), MCNPX User’s Manual, Version 2.7.0, Los Alamos National Laboratory report, LA-CP-11-00438 (2011)Google Scholar
  10. 10.
    A. Ferrari, P.R. Sala, A. Fassò, J. Ranft, CERN-2005-10 (2005) INFN/TC_05/11, SLAC-R-773Google Scholar
  11. 11.
    S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    P. Zugec et al., Nucl. Instrum. Methods A 760, 57 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    The n_TOF Collaboration, Eur. Phys. J. A 49, 27 (2013)CrossRefGoogle Scholar
  14. 14.
    The n_TOF Collaboration, Eur. Phys. J. A 49, 156 (2013)CrossRefGoogle Scholar
  15. 15.
    M.A. Cortés-Giraldo, in preparationGoogle Scholar
  16. 16.
    B. Andersson et al., Nucl. Phys. B 281, 289 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    B. Nilsson et al., Comput. Phys. Commun. 43, 387 (1987)ADSCrossRefGoogle Scholar
  18. 18.
    S. Lo Meo et al., Nucl. Phys. A 993, 43 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    A. Boudard et al., Phys. Rev. C 87, 014606 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    D. Mancusi et al., Phys. Rev. C 90, 054602 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    S. Leray et al., J. Korean Phys. Soc. 59, 791 (2011)CrossRefGoogle Scholar
  22. 22.
    A. Kelic, Report INDC(NDC)-0530 (2008) 181Google Scholar
  23. 23.
  24. 24.
    A. Boudard et al., Phys. Rev. C 66, 044615 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    S. Pedoux, PhD thesis, University of Liège, Belgium (2011)Google Scholar
  26. 26.
    S. Pedoux, J. Cugnon, Nucl. Phys. A 866, 16 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    J.M. Quesada et al., Prog. Nucl. Sci. Technol. 2, 936 (2011)CrossRefGoogle Scholar
  28. 28.
    A. Heikkinen et al., J. Phys. Conf. Ser. 119, 032024 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    M.B. Chadwick et al., Nucl. Data Sheets 107, 2931 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    M.B. Chadwick et al., Nucl. Data Sheets 112, 2887 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    E. Mendoza, D. Cano-Ott, T. Koi, C. Guerrero, IEEE Trans. Nucl. Sci. 61, 2357 (2014)ADSCrossRefGoogle Scholar
  32. 32.
  33. 33.
    GEANT4 Physics Reference and User Manuals at http://geant4.cern.ch
  34. 34.
    The n_TOF Collaboration, Nucl. Instrum. Methods A 532, 622 (2004)CrossRefGoogle Scholar
  35. 35.
    P. Schillebeeckx et al., Nucl. Data Sheet 113, 3054 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    N.M. Larson, Updated Users Guide for SAMMY: Multilevel $R$-matrix Fits to Neutron Data Using Bayes Equations, SAMMY Computer Code, Report No. ORNL/TM-9179/R7, Oak Ridge National Laboratory, 2008Google Scholar
  37. 37.
    C. Massimi et al., Phys. Rev. C 81, 044616 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    J. Pancin et al., Nucl. Instrum. Methods A 524, 102 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    D. Mancusi, in preparationGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • S. Lo Meo
    • 1
    • 2
  • M. A. Cortés-Giraldo
    • 6
  • C. Massimi
    • 2
    • 3
  • J. Lerendegui-Marco
    • 6
  • M. Barbagallo
    • 4
  • N. Colonna
    • 4
  • C. Guerrero
    • 6
  • D. Mancusi
    • 5
  • F. Mingrone
    • 2
  • J. M. Quesada
    • 6
  • M. Sabate-Gilarte
    • 6
    • 7
  • G. Vannini
    • 2
    • 3
  • V. Vlachoudis
    • 7
  • The n_TOF Collaboration
    • 1
  1. 1.ENEAResearch Centre “Ezio Clementel”BolognaItaly
  2. 2.INFNSection of BolognaBolognaItaly
  3. 3.Physics and Astronomy Dept. “Alma Mater Studiorum”University of BolognaBolognaItaly
  4. 4.INFN, Section of BariBariItaly
  5. 5.CEA-Saclay, DEN, DM2S, SERMA, LTSDGif-sur-Yvette CEDEXFrance
  6. 6.Universidad de Sevilla, Facultad de FísicaSevillaSpain
  7. 7.European Organization for Nuclear Research (CERN)GenevaSwitzerland

Personalised recommendations