Characterization of different surface passivation routes applied to a planar HPGe detector

  • G. Maggioni
  • D. R. Napoli
  • J. Eberth
  • M. Gelain
  • S. Carturan
  • M. G. Grimaldi
  • S. Tatì
Special Article - Tools for Experiment and Theory

Abstract

The effects of different passivation methods applied to the same planar high-purity germanium gamma radiation detector have been studied. By means of the scanning with a low-energy collimated gamma source, it has been found that the surface passivation gives rise to a dead layer below the intrinsic Ge surface, whose thickness and distribution are strongly dependent on the passivation type. Measured bulk detector properties like the peak-to-Compton ratio and efficiency have shown a dependence on the passivation and an influence of the passivation type on the depletion voltage, whilst the optimal energy resolution has been the same for all the passivations.

References

  1. 1.
    J. Eberth, J. Simpson, Prog. Part. Nucl. Phys. 60, 283 (2008).CrossRefADSGoogle Scholar
  2. 2.
    K. Vetter, Annu. Rev. Nucl. Part. Sci. 57, 363 (2007).CrossRefADSGoogle Scholar
  3. 3.
    C. Fleischmann et al., J. Mater. Chem. C 1, 4105 (2013).CrossRefGoogle Scholar
  4. 4.
    P.W. Loscutoff, S.F. Bent, Annu. Rev. Phys. Chem. 57, 467 (2006).CrossRefADSGoogle Scholar
  5. 5.
    G.W. Anderson et al., Appl. Phys. Lett. 66, 1123 (1995).CrossRefADSGoogle Scholar
  6. 6.
    S. Rivillon et al., Appl. Phys. Lett. 87, 253101 (2005).CrossRefADSGoogle Scholar
  7. 7.
    T. Maeda et al., J. Appl. Phys. 100, 014101 (2006).CrossRefADSGoogle Scholar
  8. 8.
    D. Bodlaki et al., Surf. Sci. 543, 63 (2003).CrossRefADSGoogle Scholar
  9. 9.
    K. Park, Y. Lee, S. Lim, Appl. Surf. Sci. 254, 1842 (2008).CrossRefADSGoogle Scholar
  10. 10.
    M. Houssa et al., Microelectronic Eng. 84, 2267 (2007).CrossRefGoogle Scholar
  11. 11.
    C. On Chui, F. Ito, K.C. Saraswat, IEEE Trans. Electr. Dev. 53, 1501 (2006).CrossRefADSGoogle Scholar
  12. 12.
    K. Prabhakaran, T. Ogino, Surf. Sci. 325, 263 (1995).CrossRefADSGoogle Scholar
  13. 13.
    S. Carturan et al., Mater. Chem. Phys. 161, 116 (2015).CrossRefGoogle Scholar
  14. 14.
    S. Sioncke et al., J. Electrochem. Soc. 158, H687 (2011).CrossRefGoogle Scholar
  15. 15.
    C. Fleischmann et al., ECS Trans. 50, 569 (2012).CrossRefGoogle Scholar
  16. 16.
    Yu.B. Gurov et al., Instrum. Exp. Tech. 52, 137 (2009).CrossRefGoogle Scholar
  17. 17.
    K. Choi, J.M. Buriak, Langmuir 16, 7737 (2000).CrossRefGoogle Scholar
  18. 18.
    T. Deegan, G. Hughes, Appl. Surf. Sci. 123/124, 66 (1998).CrossRefADSGoogle Scholar
  19. 19.
    G.F. Knoll, Radiation Detection and Measurement, 2nd edition (J. Wiley & Sons, Inc., New York, 1989).Google Scholar
  20. 20.
    E.L. Hull et al., Nucl. Instrum. Methods Phys. Res. A 364, 488 (1995).CrossRefADSGoogle Scholar
  21. 21.
    IEC Standard Test Procedures for Germanium Gamma-Ray Detectors, IEC 60973-2002 (2002) sect. 9.Google Scholar
  22. 22.
    A. Elanique et al., Appl. Radiat. Isot. 70, 538 (2012).CrossRefGoogle Scholar
  23. 23.
    R.B. Firestone, Table of Isotopes, 8th edition (J. Wiley & Sons, Inc., New York, 1996).Google Scholar
  24. 24.
    J. Llacer, Nucl. Instrum. Methods 98, 259 (1972).CrossRefADSGoogle Scholar
  25. 25.
    S.-S. Bae et al., J. Phys. Chem. C 111, 15013 (2007).CrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • G. Maggioni
    • 1
    • 2
  • D. R. Napoli
    • 2
  • J. Eberth
    • 3
  • M. Gelain
    • 1
    • 2
  • S. Carturan
    • 1
    • 2
  • M. G. Grimaldi
    • 4
  • S. Tatì
    • 4
  1. 1.Department of Physics and Astronomy “G. Galilei”University of PadovaPadova (PD)Italy
  2. 2.Istituto Nazionale di Fisica NucleareLaboratori Nazionali di LegnaroLegnaro (PD)Italy
  3. 3.Institut für KernphysikUniversität zu KölnKölnGermany
  4. 4.Department of Physics and AstronomyUniversity of CataniaCatania (CT)Italy

Personalised recommendations