Advertisement

Low-energy Coulomb excitation of 62Fe and 62Mn following in-beam decay of 62Mn

  • L. P. GaffneyEmail author
  • J. Van de Walle
  • B. Bastin
  • V. Bildstein
  • A. Blazhev
  • N. Bree
  • J. Cederkäll
  • I. Darby
  • H. De Witte
  • D. DiJulio
  • J. Diriken
  • V. N. Fedosseev
  • Ch. Fransen
  • R. Gernhäuser
  • A. Gustafsson
  • H. Hess
  • M. Huyse
  • N. Kesteloot
  • Th. Kröll
  • R. Lutter
  • B. A. Marsh
  • P. Reiter
  • M. Seidlitz
  • P. Van Duppen
  • D. Voulot
  • N. Warr
  • F. Wenander
  • K. Wimmer
  • K. Wrzosek-Lipska
Regular Article - Experimental Physics

Abstract

Sub-barrier Coulomb excitation was performed on a mixed beam of 62Mn and 62Fe, following in-trap β decay of 62Mn at REX-ISOLDE, CERN. The trapping and charge breeding times were varied in order to alter the composition of the beam, which was measured by means of an ionisation chamber at the zero-angle position of the Miniball array. A new transition was observed at 418 keV, which has been tentatively associated to a (2+,3+)→ 1 g.s. + transition. This fixes the relative positions of the β-decaying 4+ and 1+ states in 62Mn for the first time. Population of the 2 1 + state was observed in 62Fe and the cross-section determined by normalisation to the 109Ag target excitation, confirming the B(E2) value measured in recoil-distance lifetime experiments.

Keywords

Shell Model Calculation Coulomb Excitation Mixed Beam Monte Carlo Shell Model Evaluate Nuclear Structure Data File 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. Thibault et al., Phys. Rev. C 12, 644 (1975).CrossRefADSGoogle Scholar
  2. 2.
    A. Poves, J. Retamosa, Phys. Lett. B 184, 311 (1987).CrossRefADSGoogle Scholar
  3. 3.
    N. Fukunishi, T. Otsuka, T. Sebe, Phys. Lett. B 296, 279 (1992).CrossRefADSGoogle Scholar
  4. 4.
    T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001).CrossRefADSGoogle Scholar
  5. 5.
    D. Warner, Nature 430, 517 (2004).CrossRefADSGoogle Scholar
  6. 6.
    B. Bastin et al., Phys. Rev. Lett. 99, 022503 (2007).CrossRefADSGoogle Scholar
  7. 7.
    O. Sorlin, M.-G. Porquet, Prog. Part. Nucl. Phys. 61, 602 (2008).CrossRefADSGoogle Scholar
  8. 8.
    E.K. Warburton, J.A. Becker, B.A. Brown, Phys. Rev. C 41, 1147 (1990).CrossRefADSGoogle Scholar
  9. 9.
    B. Pritychenko et al., Phys. Lett. B 461, 322 (1999).CrossRefADSGoogle Scholar
  10. 10.
    K. Wimmer et al., Phys. Rev. Lett. 105, 252501 (2010).CrossRefADSGoogle Scholar
  11. 11.
    K. Heyde, J.L. Wood, Rev. Mod. Phys. 83, 1467 (2011).CrossRefADSGoogle Scholar
  12. 12.
    O. Sorlin et al., Phys. Rev. Lett. 88, 092501 (2002).CrossRefADSGoogle Scholar
  13. 13.
    N. Bree et al., Phys. Rev. C 78, 047301 (2008).CrossRefADSGoogle Scholar
  14. 14.
    M. Hannawald et al., Phys. Rev. Lett. 82, 1391 (1999).CrossRefADSGoogle Scholar
  15. 15.
    A. Gade et al., Phys. Rev. C 81, 051304 (2010).CrossRefADSGoogle Scholar
  16. 16.
    J. Elseviers, Probing the Semi-Magicity of 68Ni via the 66Ni (t, p) 68Ni Two-Neutron Transfer Reaction in Inverse Kinematics, (PhD, KU Leuven, 2014).Google Scholar
  17. 17.
    F. Recchia et al., Phys. Rev. C 88, 041302 (2013).CrossRefADSGoogle Scholar
  18. 18.
    S. Suchyta et al., Phys. Rev. C 89, 021301 (2014).CrossRefADSGoogle Scholar
  19. 19.
    Y. Tsunoda, T. Otsuka, N. Shimizu, M. Honma, Y. Utsuno, Phys. Rev. C 89, 031301 (2014).CrossRefADSGoogle Scholar
  20. 20.
    S.M. Lenzi, F. Nowacki, A. Poves, K. Sieja, Phys. Rev. C 82, 054301 (2010).CrossRefADSGoogle Scholar
  21. 21.
    A. Bürger et al., Phys. Lett. B 622, 29 (2005).CrossRefADSGoogle Scholar
  22. 22.
    M. Seidlitz et al., Phys. Rev. C 84, 034318 (2011).CrossRefADSGoogle Scholar
  23. 23.
    T. Baugher et al., Phys. Rev. C 86, 011305 (2012).CrossRefADSGoogle Scholar
  24. 24.
    H.L. Crawford et al., Phys. Rev. Lett. 110, 242701 (2013).CrossRefADSGoogle Scholar
  25. 25.
    T. Braunroth et al., Phys. Rev. C 92, 034306 (2015).CrossRefADSGoogle Scholar
  26. 26.
    J. Ljungvall et al., Phys. Rev. C 81, 061301 (2010).CrossRefADSGoogle Scholar
  27. 27.
    W. Rother et al., Phys. Rev. Lett. 106, 022502 (2011).CrossRefADSGoogle Scholar
  28. 28.
    P.C. Srivastava, I. Mehrotra, Eur. Phys. J. A 45, 185 (2010).CrossRefADSGoogle Scholar
  29. 29.
    C.J. Chiara et al., Phys. Rev. C 82, 054313 (2010).CrossRefADSGoogle Scholar
  30. 30.
    H. Heylen et al., Phys. Rev. C 92, 044311 (2015).CrossRefADSGoogle Scholar
  31. 31.
    R. Kirchner, Nucl. Instrum. Methods B 70, 186 (1992).CrossRefADSGoogle Scholar
  32. 32.
    Y. Kudryavtsev, R. Ferrer, M. Huyse, P. Van den Bergh, P. Van Duppen, Nucl. Instrum. Methods B 297, 7 (2013).CrossRefADSGoogle Scholar
  33. 33.
    CARIBU Web Page at ANL, http://www.phy.anl.gov/atlas/caribu/.
  34. 34.
    U. Köster et al., Eur. Phys. J. ST 150, 285 (2007).CrossRefGoogle Scholar
  35. 35.
    J. Van de Walle et al., Eur. Phys. J. A 42, 401 (2009).CrossRefADSGoogle Scholar
  36. 36.
    V. Fedoseyev et al., Nucl. Instrum. Methods B 126, 88 (1997).CrossRefADSGoogle Scholar
  37. 37.
    V.N. Fedosseev, Y. Kudryavtsev, V.I. Mishin, Phys. Scr. 85, 058104 (2012).CrossRefADSGoogle Scholar
  38. 38.
    B.H. Wolf et al., Nucl. Instrum. Methods B 204, 428 (2003).CrossRefADSGoogle Scholar
  39. 39.
    F. Wenander, J. Instrum. 5, C10004 (2010).CrossRefGoogle Scholar
  40. 40.
    D. Voulot et al., Nucl. Instrum. Methods B 266, 4103 (2008).CrossRefADSGoogle Scholar
  41. 41.
    N. Warr et al., Eur. Phys. J. A 49, 40 (2013).CrossRefADSGoogle Scholar
  42. 42.
    E.M. Franz, S. Katcoff, H.A. Smith, T.E. Ward, Phys. Rev. C 12, 616 (1975).CrossRefADSGoogle Scholar
  43. 43.
    D. Cline, Annu. Rev. Nucl. Part. Sci. 36, 683 (1986).CrossRefADSGoogle Scholar
  44. 44.
    L.P. Gaffney et al., Phys. Rev. C 91, 064313 (2015).CrossRefADSGoogle Scholar
  45. 45.
    M. Zielińska, arXiv:1506.04633 (2015).
  46. 46.
    T. Czosnyka, D. Cline, C.Y. Wu, Bull. Am. Phys. Soc. 28, 745 (1983).Google Scholar
  47. 47.
    D. Cline, Gosia User Manual for Simulation and Analysis of Coulomb Excitation Experiments, http://www.pas.rochester.edu/~cline/Gosia/Gosia_Manual_20120510.pdf, Rochester, NY, US, 2012.
  48. 48.
    R. Robinson, P. McGowan, P. Stelson, W. Milner, Nucl. Phys. A 150, 225 (1970).CrossRefADSGoogle Scholar
  49. 49.
    M. Throop, I. Hall, I. Naqib, D. Thomas, B. Wakefield, Phys. Lett. B 41, 585 (1972).CrossRefADSGoogle Scholar
  50. 50.
    T. Miller, M. Takeda, Nucl. Phys. A 221, 392 (1974).CrossRefADSGoogle Scholar
  51. 51.
    M. Loiselet, O. Naviliat-Cuncic, J. Vervier, Nucl. Phys. A 496, 559 (1989).CrossRefADSGoogle Scholar
  52. 52.
    J. Blachot, Nucl. Data Sheets 107, 355 (2006).CrossRefADSGoogle Scholar
  53. 53.
    M. Zielińska, HIL Annual Report: Coulomb excitation 109Ag, Technical report, Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland, 2009.Google Scholar
  54. 54.
    I. Hamamoto, Phys. Rev. C 89, 057301 (2014).CrossRefADSGoogle Scholar
  55. 55.
    M.P. Carpenter, R.V.F. Janssens, S. Zhu, Phys. Rev. C 87, 041305 (2013).CrossRefADSGoogle Scholar
  56. 56.
    L. Gaudefroy et al., Eur. Phys. J. A 23, 41 (2005).CrossRefADSGoogle Scholar
  57. 57.
    J.J. Valiente-Dobón et al., Phys. Rev. C 78, 024302 (2008).CrossRefADSGoogle Scholar
  58. 58.
    H. Heylen et al., Acta Phys. Pol. B 46, 699 (2015).CrossRefADSGoogle Scholar
  59. 59.
    O. Sorlin et al., Nucl. Phys. A 660, 3 (1999).CrossRefADSGoogle Scholar
  60. 60.
    D. Pauwels, private communications (2014).Google Scholar
  61. 61.
    J. Tuli, Evaluated Nuclear Structure Data File (ENSDF), 2012.Google Scholar
  62. 62.
    A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. II Nuclear Deformations (W. A. Benjamin, 1969).Google Scholar
  63. 63.
    I. Stefanescu et al., Phys. Rev. Lett. 98, 122701 (2007).CrossRefADSGoogle Scholar
  64. 64.
    D. Steppenbeck et al., Phys. Rev. C 81, 014305 (2010).CrossRefADSGoogle Scholar
  65. 65.
    C.D. Nesaraja, S.D. Geraedts, B. Singh, Nucl. Data Sheets 111, 897 (2010).CrossRefADSGoogle Scholar
  66. 66.
    E. Warburton, J. Olness, A. Nathan, J. Kolata, J. McGrory, Phys. Rev. C 16, 1027 (1977).CrossRefADSGoogle Scholar
  67. 67.
    E. Browne, J. Tuli, Nucl. Data Sheets 114, 1849 (2013).CrossRefADSGoogle Scholar
  68. 68.
    N. Hoteling et al., Phys. Rev. C 82, 044305 (2010).CrossRefADSGoogle Scholar
  69. 69.
    D. Radulov, Investigating the nuclear structure of the neutron-rich odd-mass Fe isotopes, in the beta-decay of their parent - Mn (PhD, KU Leuven, 2014).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • L. P. Gaffney
    • 1
    Email author
  • J. Van de Walle
    • 1
    • 2
  • B. Bastin
    • 1
    • 3
  • V. Bildstein
    • 4
  • A. Blazhev
    • 5
  • N. Bree
    • 1
  • J. Cederkäll
    • 6
  • I. Darby
    • 7
  • H. De Witte
    • 1
  • D. DiJulio
    • 6
  • J. Diriken
    • 1
    • 8
  • V. N. Fedosseev
    • 2
  • Ch. Fransen
    • 5
  • R. Gernhäuser
    • 5
  • A. Gustafsson
    • 2
  • H. Hess
    • 5
  • M. Huyse
    • 1
  • N. Kesteloot
    • 1
    • 8
  • Th. Kröll
    • 9
  • R. Lutter
    • 10
  • B. A. Marsh
    • 2
  • P. Reiter
    • 5
  • M. Seidlitz
    • 5
  • P. Van Duppen
    • 1
  • D. Voulot
    • 2
  • N. Warr
    • 5
  • F. Wenander
    • 2
  • K. Wimmer
    • 4
  • K. Wrzosek-Lipska
    • 1
    • 11
  1. 1.Instituut voor Kern- en StralingsfysicaKU LeuvenLeuvenBelgium
  2. 2.CERN-ISOLDE, CERNGeneva 23Switzerland
  3. 3.GANIL CEA/DSM-CNRS/IN2P3CaenFrance
  4. 4.Physics Department E12Technische Universität MünchenGarchingGermany
  5. 5.Institut für KernphysikUniversität zu KölnKölnGermany
  6. 6.Physics DepartmentUniversity of LundLundSweden
  7. 7.Department of PhysicsUniversity of JyvaskylaJyvaskylaFinland
  8. 8.Belgian Nuclear Research Centre SCK•CENMolBelgium
  9. 9.Institut für KernphysikTechnische Universität DarmstadtDarmstadtGermany
  10. 10.Ludwig-Maximilians-Universität-MünchenMünchenGermany
  11. 11.Heavy Ion LaboratoryUniversity of WarsawWarsawPoland

Personalised recommendations