First-order neutron-deuteron scattering in a three-dimensional approach

  • K. Topolnicki
  • J. Golak
  • R. Skibiński
  • H. Witała
  • C. A. Bertulani
Open Access
Regular Article - Theoretical Physics


The description of the neutron-deuteron scattering process has been possible using the partial wave approach since the 1980s (Few-Body Syst. 3, 123 (1988); Phys. Rep. 274, 107 (1996); Acta Phys. Pol. B 28, 1677 (1997)). In recent years the so-called “three-dimensional” formalism was developed, where the calculations are performed with operators acting directly on the three-dimensional degrees of freedom of the nucleons. This approach avoids a tedious step of the classical calculations, the partial wave decomposition of operators, and in this paper is applied to the neutron-deuteron scattering process. The calculations presented here are a first step toward a new calculation scheme that would make it possible to easily produce precise predictions for a wide range of nuclear force models. This paper is a continuation of the work presented in Eur. Phys. J. A 43, 339 (2010) where the breakup channel was considered in detail. The theoretical formulation used in this paper is very closely related to the formalism introduced in Eur. Phys. J. A 43, 339 (2010) and Phys. Rev. C 68, 054003 (2003), however, we work directly with the matrix representation of operators in the joined isospin-spin space of the three-nucleon system and use only the driving term of the three-nucleon Faddeev equations. This greatly simplifies the numerical realization of the calculation and allows us to consider also the elastic channel of the reaction.


  1. 1.
    W. Glöckle, H. Witała, D. Hüber, H. Kamada, J. Golak, Phys. Rep. 274, 107 (1996).CrossRefADSGoogle Scholar
  2. 2.
    H. Witała, W. Glöckle, J. Golak, H. Kamada, J. Kuroś-Zołnierczuk, A. Nogga, R. Skibiński, Phys. Rev. C 63, 024007 (2001).CrossRefADSGoogle Scholar
  3. 3.
    A. Deltuva, A.C. Fonseca, A. Kievsky, S. Rosati, P.U. Sauer, M. Viviani, Phys. Rev. C 71, 064003 (2005).CrossRefADSGoogle Scholar
  4. 4.
    M.N. Platonova, V.I. Kukulin, Phys. At. Nucl. 73, 86 (2010) Yad. Fiz. 73.CrossRefGoogle Scholar
  5. 5.
    R. Machleidt, Advances in Nuclear Physics, Vol. 19, The Meson Theory of Nuclear Forces and Nuclear Structure (Springer, US, 1989). .Google Scholar
  6. 6.
    R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995).CrossRefADSGoogle Scholar
  7. 7.
    R. Machleidt, F. Sammarruca, Y. Song, Phys. Rev. C 53, R1483 (1996).CrossRefADSGoogle Scholar
  8. 8.
    V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, J.J. de Swart, Phys. Rev. C 49, 2950 (1994).CrossRefADSGoogle Scholar
  9. 9.
    D.R. Entem, R. Mechleidt, Phys. Rev. C 68, 041001 (2003).CrossRefADSGoogle Scholar
  10. 10.
    E. Epelbaum, W. Glöckle, Ulf-G. Meißner, Nucl. Phys. A 747, 362 (2005).CrossRefADSGoogle Scholar
  11. 11.
    H. Witała, J. Golak, R. Skibiński, K. Topolnicki, J. Phys. G: Nucl. Part. Phys. 41, 094001 (2014).CrossRefADSGoogle Scholar
  12. 12.
    H. Witała, W. Glöckle, D. Hüber, J. Golak, H. Kamada, Phys. Rev. Lett. 81, 1183 (1998).CrossRefADSGoogle Scholar
  13. 13.
    K. Sekiguchi et al., Phys. Rev. C 89, 064007 (2014).CrossRefADSGoogle Scholar
  14. 14.
    E. Stephan et al., Eur. Phys. J. A 49, 36 (2013).CrossRefADSGoogle Scholar
  15. 15.
    I. Ciepał et al., Phys. Rev. C 85, 017001 (2012).CrossRefADSGoogle Scholar
  16. 16.
    H. Witała, J. Golak, R. Skibiński, W. Glöckle, H. Kamada, W.N. Polyzou, Phys. Rev. C 83, 044001 (2011).CrossRefADSGoogle Scholar
  17. 17.
    H. Witała, J. Golak, R. Skibiński, W. Glöckle, H. Kamada, W.N. Polyzou, Phys. Rev. C 88, 069904 (2013).CrossRefADSGoogle Scholar
  18. 18.
    W. Glöckle, The Quantum Mechanical Few-Body Problem (Springer-Verlag, Berlin-Heidelberg, 1983).Google Scholar
  19. 19.
    W. Glöckle, I. Fachruddin, Ch. Elster, J. Golak, R. Skibiński, H. Witała, Eur. Phys. J. A 43, 339 (2010).CrossRefADSGoogle Scholar
  20. 20.
    J. Golak, W. Glöckle, R. Skibiński, H. Witała, D. Rozpedzik, K. Topolnicki, I. Fachruddin, Ch. Elster, A. Nogga, Phys. Rev. C 81, 034006 (2010).CrossRefADSGoogle Scholar
  21. 21.
    J. Golak, R. Skibiński, H. Witała, K. Topolnicki, W. Glöckle, A. Nogga, H. Kamada, Few-Body Syst. 53, 237 (2012).CrossRefADSGoogle Scholar
  22. 22.
    K. Topolnicki, PhD thesis, Jagiellonian University (2014) unpublished, available online
  23. 23.
    Wolfram Research Inc. Mathematica Version 10.0 (2014) Wolfram Research Inc. Champaign, Illinois.Google Scholar
  24. 24.
    I. Fachruddin, Ch. Elster, W. Glöckle, Phys. Rev. C 63, 054003 (2001).CrossRefADSGoogle Scholar
  25. 25.
    L. Wolfenstein, Phys. Rev. 96, 1654 (1954).MATHCrossRefADSGoogle Scholar
  26. 26.
    Y. Saad, Iterative methods for sparse linear systems (SIAM Philadelphia, PA, USA, 2003).Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • K. Topolnicki
    • 1
    • 2
  • J. Golak
    • 1
  • R. Skibiński
    • 1
  • H. Witała
    • 1
  • C. A. Bertulani
    • 2
  1. 1.M. Smoluchowski Institute of PhysicsJagiellonian UniversityKrakówPoland
  2. 2.Department of Physics and AstronomyTexas A&M University CommerceCommerceUSA

Personalised recommendations