Advertisement

Bohr Hamiltonian with Hulthén plus ring-shaped potential for triaxial nuclei

  • M. Chabab
  • A. Lahbas
  • M. OulneEmail author
Regular Article - Theoretical Physics

Abstract

In this paper, we solve the eigenvalues and eigenvectors problem with the Bohr collective Hamiltonian for triaxial nuclei. The β-part of the collective potential is taken to be equal to the Hulthén potential while the γ-part is defined by a new generalized potential obtained from a ring-shaped one. Analytical expressions for spectra and wave functions are derived by means of a recent version of the asymptotic iteration method and the usual approximations. The calculated energies and B(E2) transition rates are compared with experimental data and the available theoretical results in the literature.

Keywords

Transition Rate Wigner Function Total Wave Function Screen Parameter Ground State Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Bohr, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 26, 1 (1952).Google Scholar
  2. 2.
    A. Bohr, B.R. Mottelson, Nuclear Structure Vol. II: Nuclear Deformations (Benjamin, New York, 1975).Google Scholar
  3. 3.
    L. Fortunato, Eur. Phys. J. A 26, 1 (2005).CrossRefADSGoogle Scholar
  4. 4.
    F. Iachello, Phys. Rev. Lett. 85, 3580 (2000).CrossRefADSGoogle Scholar
  5. 5.
    F. Iachello, Phys. Rev. Lett. 87, 052502 (2001).CrossRefADSGoogle Scholar
  6. 6.
    F. Iachello, Phys. Rev. Lett. 91, 132502 (2003).CrossRefADSGoogle Scholar
  7. 7.
    D. Bonatsos, D. Lenis, D. Petrellis, P.A. Terziev, Phys. Lett. B 588, 172 (2004).CrossRefADSGoogle Scholar
  8. 8.
    L. Hulthén, Ark. Mat. Astron. Fys. A 28, 5 (1942).Google Scholar
  9. 9.
    L. Hulthén, Ark. Mat. Astron. Fys. B 29, 1 (1942).ADSGoogle Scholar
  10. 10.
    M. Chabab, A. Lahbas, M. Oulne, Int. J. Mod. Phys. E 21, 10 (2012).CrossRefGoogle Scholar
  11. 11.
    I. Boztosun, M. Karakoc, Chin. Phys. Lett. 24, 3028 (2007).CrossRefADSGoogle Scholar
  12. 12.
    M. Chabab, A. Lahbas, M. Oulne, Phys. Rev. C 91, 064307 (2015).CrossRefADSGoogle Scholar
  13. 13.
    M. Chabab, M. Oulne, Int. Rev. Phys. 4, 331 (2010).Google Scholar
  14. 14.
    M. Chabab, R. Jourdani, M. Oulne, Int. J. Phys. Sci. 7, 1150 (2012).CrossRefGoogle Scholar
  15. 15.
    I. Yigitoglu, D. Bonatsos, Phys. Rev. C 83, 014303 (2011).CrossRefADSGoogle Scholar
  16. 16.
    A.A. Raduta, P. Buganu, Phys. Rev. C 83, 034313 (2011).CrossRefADSGoogle Scholar
  17. 17.
    I. Inci, Int. J. Mod. Phys. E 23, 10 (2014).CrossRefGoogle Scholar
  18. 18.
    D.J. Rowe, T.A. Welsh, M.A. Caprio, Phys. Rev. C 79, 054304 (2009).CrossRefADSGoogle Scholar
  19. 19.
    A.S. Davydov, A.A. Chaban, Nucl. Phys. 20, 499 (1960).CrossRefGoogle Scholar
  20. 20.
    D. Bonatsos, D. Lenis, E.A. McCutchan, D. Petrellis, I. Yigitoglu, Phys. Lett. B 649, 394 (2007).CrossRefADSGoogle Scholar
  21. 21.
    A.A. Raduta, A.C. Gheorghe, P. Buganu, A. Faessler, Nucl. Phys. A 819, 46 (2009).CrossRefADSGoogle Scholar
  22. 22.
    L. Fortunato, Phys. Rev. C 70, 011302 (2004).CrossRefADSGoogle Scholar
  23. 23.
    L. Fortunato, S. De Baerdemacker, K. Heyde, Phys. Rev. C 74, 014310 (2006).CrossRefADSGoogle Scholar
  24. 24.
    L. Wilets, M. Jean, Phys. Rev. 102, 788 (1956).zbMATHCrossRefADSGoogle Scholar
  25. 25.
    U. Laha, C. Bhattacharyya, K. Roy, B. Talukdar, Phys. Rev. C 38, 558 (1988).CrossRefADSGoogle Scholar
  26. 26.
    P. Matthys, H. De Meyer, Phys. Rev. A 38, 1168 (1988).CrossRefADSGoogle Scholar
  27. 27.
    C.S. Jia, T. Chen, L.G. Cui, Phys. Lett. A 373, 1621 (2009).zbMATHMathSciNetCrossRefADSGoogle Scholar
  28. 28.
    S.H. Dong, W.C. Qiang, G.H. Sun, V.B. Bezerra, J. Phys. A: Math. Theor. 40, 10535 (2007).zbMATHMathSciNetCrossRefADSGoogle Scholar
  29. 29.
    A. Soylu, O. Bayrak, I. Boztosun, J. Phys. A: Math. Theor. 41, 065308 (2008).MathSciNetCrossRefADSGoogle Scholar
  30. 30.
    H. Ciftci, R.L. Hall, N. Saad, J. Phys. A 36, 11807 (2003).zbMATHMathSciNetCrossRefADSGoogle Scholar
  31. 31.
    H. Ciftci, R.L. Hall, N. Saad, J. Phys. Math. Gen. A 38, 1147 (2005).zbMATHMathSciNetCrossRefADSGoogle Scholar
  32. 32.
    S.M. Ikhdair, R. Sever, J. Math. Chem. 42, 461 (2007).zbMATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    O. Bayrak, G. Kocak, I. Boztosun, J. Phys. A: Math. Gen. 39, 11521 (2006).zbMATHMathSciNetCrossRefADSGoogle Scholar
  34. 34.
    D. Agboola, Commun. Theor. Phys. 55, 972 (2011).zbMATHCrossRefADSGoogle Scholar
  35. 35.
    S. De Baerdemacker, L. Fortunato, V. Hellemans, K. Heyde, Nucl. Phys. A 769, 16 (2006).CrossRefADSGoogle Scholar
  36. 36.
    D. Bonatsos, E.A. McCutchan, N. Minkov, R.F. Casten, P. Yotov, D. Lenis, D. Petrellis, I. Yigitoglu, Phys. Rev. C 76, 064312 (2007).CrossRefADSGoogle Scholar
  37. 37.
    P. Buganu, A.A. Raduta, Rom. J. Phys. 60, 161 (2015).Google Scholar
  38. 38.
    A. Gheorghe, A.A. Raduta, A. Faessler, Phys. Lett. B 648, 171 (2007).CrossRefADSGoogle Scholar
  39. 39.
    M. Abramowitz, I.A. Stegun Handbook of Mathematical Functions (Dover, New York, 1972).CrossRefGoogle Scholar
  40. 40.
    D. Bonatsos, D. Lenis, N. Minkov, D. Petrellis, P.P. Raychev, P.A. Terziev, Phys. Lett. B 584, 40 (2004).CrossRefADSGoogle Scholar
  41. 41.
    J. Meyer-ter-Vehn, Nucl. Phys. A 249, 111 (1975).CrossRefADSGoogle Scholar
  42. 42.
    G.B. Arfken, H.J. Weber Mathematical Methods for Physicists (Harcourt Academic Press, San Diego, 2001).CrossRefGoogle Scholar
  43. 43.
    G. Szego Orthagonal Polynomials (American Mathematical Society, New York, 1939).CrossRefGoogle Scholar
  44. 44.
    A.R. Edmonds Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1957).CrossRefGoogle Scholar
  45. 45.
    A.S. Davydov, G.F. Fillipov, Nucl. Phys. 8, 237 (1958).CrossRefGoogle Scholar
  46. 46.
    E.A. McCutchan, D. Bonatsos, N.V. Zamfir, R.F. Casten, Phys. Rev. C 76, 024306 (2007).CrossRefADSGoogle Scholar
  47. 47.
    A.A. Raduta, P. Buganu, Phys. Rev. C 88, 064328 (2013).CrossRefADSGoogle Scholar
  48. 48.
    U. Meyer, A.A. Raduta, A. Faessler, Nucl. Phys. A 641, 321 (1998).CrossRefADSGoogle Scholar
  49. 49.
    W. Greiner, J.A. Maruhn Nuclear Models (Springer, Berlin, 1996).CrossRefGoogle Scholar
  50. 50.
  51. 51.
    N.V. Zamfir, R.F. Casten, Phys. Lett. B 260, 265 (1991).CrossRefADSGoogle Scholar
  52. 52.
    D. Bonatsos, D. Lenis, D. Petrellis, P.A. Terziev, I. Yigitoglu, Phys. Lett. B 621, 102 (2005).CrossRefADSGoogle Scholar
  53. 53.
    P. Buganu, R. Budaca, Phys. Rev. C 91, 014306 (2015).CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.High Energy Physics and Astrophysics Laboratory, Department of Physics, Faculty of Sciences SemlaliaCadi Ayyad UniversityMarrakeshMorocco

Personalised recommendations