Advertisement

Role of Λ(1670) in the γp → K+ ηΛ reaction near threshold

  • Li-Ye Xiao
  • Qi-Fang Lü
  • Ju-Jun XieEmail author
  • Xian-Hui Zhong
Regular Article - Theoretical Physics

Abstract

The role of the Λ(1670) resonance in the γpK + ηΛ reaction near threshold is studied within an effective Lagrangian approach. We perform a calculation for the total and differential cross section of the γpK + ηΛ reaction by including the contributions from the Λ(1670) intermediate state decaying into ηΛ dominated by K and K *− mesons exchanges, the nucleon pole and N*(1535) resonance decaying into K + Λ dominated by exchanges of ω and K mesons. Besides, the non-resonance process and contact terms to keep the total scattering amplitude gauge invariant are also considered. With our model parameters, the total cross section of this reaction is of the order of 1 nanobarn at photon beam energy E γ ∼ 2.5 GeV. It is expected that our model predictions could be tested by future experiments.

Keywords

Form Factor Total Cross Section Contact Term Partial Decay Width Baryon Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Particle Data Group Collaboration (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014).CrossRefGoogle Scholar
  2. 2.
    N. Isgur, G. Karl, Phys. Rev. D 18, 4187 (1978).CrossRefADSGoogle Scholar
  3. 3.
    S. Capstick, N. Isgur, Phys. Rev. D 34, 2809 (1986).CrossRefADSGoogle Scholar
  4. 4.
    U. Loring, B.C. Metsch, H.R. Petry, Eur. Phys. J. A 10, 395 (2001).CrossRefADSGoogle Scholar
  5. 5.
    E. Klempt, J.M. Richard, Rev. Mod. Phys. 82, 1095 (2010).CrossRefADSGoogle Scholar
  6. 6.
    Crystal Ball Collaboration (A. Starostin et al.), Phys. Rev. C 64, 055205 (2001).CrossRefGoogle Scholar
  7. 7.
    B.C. Liu, J.J. Xie, Phys. Rev. C 86, 055202 (2012).CrossRefADSGoogle Scholar
  8. 8.
    B.C. Liu, J.J. Xie, Phys. Rev. C 85, 038201 (2012).MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    L.Y. Xiao, X.H. Zhong, Phys. Rev. C 88, 065201 (2013).CrossRefADSGoogle Scholar
  10. 10.
    H. Kamano, S.X. Nakamura, T.-S.H. Lee, T. Sato, Phys. Rev. C 90, 065204 (2014).CrossRefADSGoogle Scholar
  11. 11.
    C. Hanhart, Phys. Rep. 397, 155 (2004).CrossRefADSGoogle Scholar
  12. 12.
    B.S. Zou, Chin. Phys. C 33, 1113 (2009) and references therein.CrossRefADSGoogle Scholar
  13. 13.
    C. Garcia-Recio, J. Nieves, E. Ruiz Arriola, M.J. Vicente Vacas, Phys. Rev. D 67, 076009 (2003).CrossRefADSGoogle Scholar
  14. 14.
    J.J. Xie, B.S. Zou, Phys. Lett. B 649, 405 (2007).CrossRefADSGoogle Scholar
  15. 15.
    J.J. Xie, B.S. Zou, H.C. Chiang, Phys. Rev. C 77, 015206 (2008).CrossRefADSGoogle Scholar
  16. 16.
    J.J. Xie, E. Wang, J. Nieves, Phys. Rev. C 89, 015203 (2014).CrossRefADSGoogle Scholar
  17. 17.
    J.J. Xie, B.C. Liu, C.S. An, Phys. Rev. C 88, 015203 (2013).CrossRefADSGoogle Scholar
  18. 18.
    C.Z. Wu, Q.F. Lü, J.J. Xie, X.R. Chen, Commun. Theor. Phys. 63, 215 (2015).CrossRefADSGoogle Scholar
  19. 19.
    J.J. Xie, J.J. Wu, B.S. Zou, Phys. Rev. C 90, 055204 (2014).CrossRefADSGoogle Scholar
  20. 20.
    J.J. Xie, E. Wang, B.S. Zou, Phys. Rev. C 90, 025207 (2014).CrossRefADSGoogle Scholar
  21. 21.
    R.G. Moorhouse, Phys. Rev. Lett. 16, 772 (1966).CrossRefADSGoogle Scholar
  22. 22.
    W.T. Chiang, S.N. Yang, M. Vanderhaeghen, D. Drechsel, Nucl. Phys. A 723, 205 (2003).CrossRefADSGoogle Scholar
  23. 23.
    B.C. Liu, Phys. Rev. C 86, 015207 (2012).CrossRefADSGoogle Scholar
  24. 24.
    D.O. Riska, G.E. Brown, Nucl. Phys. A 679, 577 (2001).CrossRefADSGoogle Scholar
  25. 25.
    Q. Zhao, Z.p. Li, C. Bennhold, Phys. Rev. C 58, 2393 (1998).CrossRefADSGoogle Scholar
  26. 26.
    W.H. Liang, P.N. Shen, J.X. Wang, B.S. Zou, J. Phys. G 28, 333 (2002).CrossRefADSGoogle Scholar
  27. 27.
    T. Feuster, U. Mosel, Phys. Rev. C 58, 457 (1998).CrossRefADSGoogle Scholar
  28. 28.
    T. Feuster, U. Mosel, Phys. Rev. C 59, 460 (1999).CrossRefADSGoogle Scholar
  29. 29.
    G. Penner, U. Mosel, Phys. Rev. C 66, 055211 (2002).CrossRefADSGoogle Scholar
  30. 30.
    G. Penner, U. Mosel, Phys. Rev. C 66, 055212 (2002).CrossRefADSGoogle Scholar
  31. 31.
    V. Shklyar, H. Lenske, U. Mosel, Phys. Rev. C 72, 015210 (2005).CrossRefADSGoogle Scholar
  32. 32.
    R. Machleidt, K. Holinde, C. Elster, Phys. Rep. 149, 1 (1987).CrossRefADSGoogle Scholar
  33. 33.
    H. Kamano, B. Julia-Diaz, T.-S.H. Lee, A. Matsuyama, T. Sato, Phys. Rev. C 80, 065203 (2009).CrossRefADSGoogle Scholar
  34. 34.
    N. Suzuki, B. Julia-Diaz, H. Kamano, T.-S.H. Lee, A. Matsuyama, T. Sato, Phys. Rev. Lett. 104, 042302 (2010).CrossRefADSGoogle Scholar
  35. 35.
    H. Kamano, B. Julia-Diaz, T.-S.H. Lee, A. Matsuyama, T. Sato, Phys. Rev. C 79, 025206 (2009).CrossRefADSGoogle Scholar
  36. 36.
    H. Kamano, S.X. Nakamura, T.S.H. Lee, T. Sato, Phys. Rev. D 84, 114019 (2011).CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Li-Ye Xiao
    • 1
  • Qi-Fang Lü
    • 2
  • Ju-Jun Xie
    • 3
    • 4
    • 5
    Email author
  • Xian-Hui Zhong
    • 1
  1. 1.Department of PhysicsHunan normal UniversityHunanChina
  2. 2.Department of PhysicsZhengzhou UniversityHenanChina
  3. 3.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
  4. 4.Research Center for Hadron and CSR PhysicsInstitute of Modern Physics of CAS and Lanzhou UniversityLanzhouChina
  5. 5.State Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations