Advertisement

The RIB production target for the SPES project

  • Alberto MonettiEmail author
  • Alberto Andrighetto
  • Carlo Petrovich
  • Mattia Manzolaro
  • Stefano Corradetti
  • Daniele Scarpa
  • Francesco Rossetto
  • Fernando Martinez Dominguez
  • Jesus Vasquez
  • Massimo Rossignoli
  • Michele Calderolla
  • Roberto Silingardi
  • Aldo Mozzi
  • Francesca Borgna
  • Gianluca Vivian
  • Enrico Boratto
  • Michele Ballan
  • Gianfranco Prete
  • Giovanni Meneghetti
Special Article - Tools for Experiment and Theory

Abstract

Facilities making use of the Isotope Separator On-Line (ISOL) method for the production of Radioactive Ion Beams (RIB) attract interest because they can be used for nuclear structure and reaction studies, astrophysics research and interdisciplinary applications. The ISOL technique is based on the fast release of the nuclear reaction products from the chosen target material together with their ionization into short-lived nuclei beams. Within this context, the SPES (Selective Production of Exotic Species) facility is now under construction in Italy at INFN-LNL (Istituto Nazionale di Fisica Nucleare — Laboratori Nazionali di Legnaro). The SPES facility will produce RIBs mainly from n-rich isotopes obtained by a 40 MeV cyclotron proton beam (200 μA) directly impinging on a uranium carbide multi-foil fission target. The aim of this work is to describe and update, from a comprehensive point of view, the most important results obtained by the analysis of the on-line behavior of the SPES production target assembly. In particular an improved target configuration has been studied by comparing different codes and physics models: the thermal analyses and the isotope production are re-evaluated. Then some consequent radioprotection aspects, which are essential for the installation and operation of the facility, are presented.

Keywords

Proton Beam SPES Target Power Deposition Isotope Production Nuclear Reaction Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Andrighetto et al., AIP Conf. Proc. 1491, 58 (2012).CrossRefADSGoogle Scholar
  2. 2.
    G. Prete et al., Phys. Proc. 26, 274 (2012).CrossRefADSGoogle Scholar
  3. 3.
    A. Andrighetto et al., Eur. Phys. J. A 30, 591 (2006).CrossRefADSGoogle Scholar
  4. 4.
    D. Scarpa et al., Eur. Phys. J. A 47, 32 (2011).CrossRefADSGoogle Scholar
  5. 5.
    M. Manzolaro et al., Rev. Sci. Instrum. 83, 02A907 (2012).CrossRefGoogle Scholar
  6. 6.
    J. Montano et al., Nucl. Instrum. Methods A 648, 238 (2011).CrossRefADSGoogle Scholar
  7. 7.
    G. Bisoffi, in Proceedings of HIAT 2012 (Chicago, IL USA, 2012).Google Scholar
  8. 8.
    L. Biasetto et al., J. Nucl. Mater. 404, 68 (2010).CrossRefADSGoogle Scholar
  9. 9.
    L. Biasetto et al., Eur. Phys. J. A 42, 517 (2009).CrossRefADSGoogle Scholar
  10. 10.
    S. Corradetti et al., Eur. Phys. J. A 49, 56 (2013).CrossRefADSGoogle Scholar
  11. 11.
    S. Corradetti et al., Eur. Phys. J. A 47, 119 (2011).CrossRefADSGoogle Scholar
  12. 12.
    M. Barbui et al., Nucl. Instrum. Methods B 266, 4289 (2008).CrossRefADSGoogle Scholar
  13. 13.
    M. Manzolaro et al., Nucl. Instrum. Methods B 317, 446 (2013).CrossRefADSGoogle Scholar
  14. 14.
    M. Manzolaro, Engineering of the INFN SPES target -- ion source system (LAP Lambert Academic Publishing, 2012).Google Scholar
  15. 15.
    J.S. Hendricks, MCNPX Version 2.5.e, LA-UR-04-0569 (2004).Google Scholar
  16. 16.
    A. Fassò, FLUKA: a multi-particle transport code, CERN-2005-10 (2005), INFN/TC05/11, SLAC-R-773.Google Scholar
  17. 17.
    G. Battistoni et al., AIP Conf. Proc. 896, 31 (2007).CrossRefADSGoogle Scholar
  18. 18.
    M. Cavinato et al., Phys. Lett. B 382, 1 (1996).CrossRefADSGoogle Scholar
  19. 19.
    V.A. Rubchenya et al., Nucl. Instrum. Methods A 463, 653 (2001).CrossRefADSGoogle Scholar
  20. 20.
    H.W. Bertini, Phys. Rev. 131, 1801 (1963).CrossRefADSGoogle Scholar
  21. 21.
    Y. Yariv, Z. Fraenkel, Phys. Rev. C 20, 2227 (1979).CrossRefADSGoogle Scholar
  22. 22.
    A.R. Junghans et al., Nucl. Phys. A 629, 635 (1998).CrossRefADSGoogle Scholar
  23. 23.
    J. Barish, HETFIS High-Energy Nucleon-Meson Transport Code with Fission, ORNL-TM-7882 report (Oak Ridge National Laboratory, 1981).Google Scholar
  24. 24.
    F. Atchison, Spallation and Fission in Heavy Metal Nuclei under Medium Energy Proton Bombardment, in Targets for Neutron Beam Spallation Sources, Jul-Conf-34, Kernforschungsanlage Julich GmbH (1980).Google Scholar
  25. 25.
    D.B. Pelowitz, MCNPX 2.7.E Extension, Technical Report LA-UR-11-01502, Los Alamos (2011). .Google Scholar
  26. 26.
    J.R. Beene et al., J. Phys. G: Nucl. Part. Phys. 38, 024002 (2011).CrossRefADSGoogle Scholar
  27. 27.
    A.E. Barzakh et al., Nucl. Instrum. Methods B 126, 150 (1997).CrossRefADSGoogle Scholar
  28. 28.
    N. Sato et al., Rev. Sci. Instrum. 84, 023304 (2013).CrossRefADSGoogle Scholar
  29. 29.
    Y. Liu et al., Nucl. Instrumen. Methods B 243, 442 (2006).CrossRefADSGoogle Scholar
  30. 30.
    L. Penescu et al., Rev. Sci. Instrum. 81, 02A906 (2010).CrossRefGoogle Scholar
  31. 31.
    K. Tshoo et al., EPJ Web of Conferences 66, 11016 (2014).CrossRefGoogle Scholar
  32. 32.
    A. Andrighetto et al., Eur. Phys. J. A 25, 41 (2005).CrossRefGoogle Scholar
  33. 33.
    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM The Stopping and Range of Ions in Matter (2008).Google Scholar
  34. 34.
    M.G. Saint-Laurent, Spiral Phase-II Final Report (European RTT, 2001).Google Scholar
  35. 35.
    L.C. Carraz et al., Nucl. Instrum. Methods 158, 69 (1979).CrossRefADSGoogle Scholar
  36. 36.
    S. McLain, J.H. Martens (Editors), Reactor Handbook (Interscience Publishers, New York, 1964).Google Scholar
  37. 37.
    Hj. Matzke, Science of Advanced LMFBR Fuels (North Holland, Amsterdam, 1980).Google Scholar
  38. 38.
    J.P. Greene et al., Nucl. Instrum. Methods B 241, 986 (2005).CrossRefADSGoogle Scholar
  39. 39.
    ANSYS Academic Research, Release 15.0.Google Scholar
  40. 40.
    M. Manzolaro et al., Rev. Sci. Instrum. 84, 054902 (2013).CrossRefADSGoogle Scholar
  41. 41.
    W.B. Wilson, T.R. England, A Manual for CINDER’90 Version C00D and Associated Codes and Data, LA-UR-00-Draft (2001).Google Scholar
  42. 42.
    C. Petrovich, SP-FISPACT2001 A Computer Code for Activation and Decay Calculations for Intermediate Energies. A Connection of FISPACT with MCNPX, RT/ERG/2001/10 (ENEA, Bologna, 2001).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alberto Monetti
    • 1
    • 2
    Email author
  • Alberto Andrighetto
    • 1
  • Carlo Petrovich
    • 3
  • Mattia Manzolaro
    • 1
  • Stefano Corradetti
    • 1
  • Daniele Scarpa
    • 1
  • Francesco Rossetto
    • 1
  • Fernando Martinez Dominguez
    • 1
    • 4
  • Jesus Vasquez
    • 1
  • Massimo Rossignoli
    • 1
  • Michele Calderolla
    • 1
  • Roberto Silingardi
    • 1
  • Aldo Mozzi
    • 1
  • Francesca Borgna
    • 1
    • 5
  • Gianluca Vivian
    • 1
  • Enrico Boratto
    • 1
  • Michele Ballan
    • 1
  • Gianfranco Prete
    • 1
  • Giovanni Meneghetti
    • 2
  1. 1.Laboratori Nazionali di Legnaroviale dell’Università 2Legnaro (PD)Italy
  2. 2.Department of Industrial Engineering (DII)University of PaduaPadovaItaly
  3. 3.ENEABolognaItaly
  4. 4.Instituto de Fusión NuclearESS BilbaoMadridSpain
  5. 5.Department of Pharmaceutical and Pharmacological SciencesUniversity of PaduaPadovaItaly

Personalised recommendations