Final-state interaction correction to the electromagnetic nucleon form factors in the time-like region

  • Jacques Van de WieleEmail author
  • Saro Ong
Regular Article - Theoretical Physics


We study the strong energy dependence of the proton electromagnetic form factors in the time-like region, taking into account the one-pion-exchange final-state interaction in a covariant way. This effect is quantified in terms of the corrected Dirac F 1 and Pauli F 2 form factors and in the commonly used electric G E and magnetic G M ones. Our results on the ratio |G E /G M depend only on the values of two free parameters and allow significant comparisons with the BaBar data.


Form Factor Electromagnetic Form Factor Coulomb Correction Born Cross Section BaBar Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    B. Aubert et al., Phys. Rev. D 73, 012005 (2006).CrossRefADSGoogle Scholar
  2. 2.
    J.P. Lees et al., Phys. Rev. D 87, 092005 (2013).CrossRefADSGoogle Scholar
  3. 3.
    J.P. Lees et al., Phys. Rev. D 88, 072009 (2013).CrossRefADSGoogle Scholar
  4. 4.
    M. Ablikim et al., Phys. Lett. B 630, 14 (2005).CrossRefADSGoogle Scholar
  5. 5.
    M. Ambrogiani et al., Phys. Rev. D 60, 032002 (1999) and references therein.CrossRefADSGoogle Scholar
  6. 6.
    G. Bardin et al., Nucl. Phys. B 411, 3 (1994).CrossRefADSGoogle Scholar
  7. 7.
    C. Tzara, Nucl. Phys. B 18, 246 (1970).CrossRefADSGoogle Scholar
  8. 8.
    J. Haidenbauer, H.W. Hammer, U.G. Meißner, A. Sibirtsev, Phys. Lett. B 643, 29 (2006).CrossRefADSGoogle Scholar
  9. 9.
    J. Haidenbauer, X.W. Kang, U.G. Meißner, Nucl. Phys. A 929, 102 (2014) and references therein.CrossRefADSGoogle Scholar
  10. 10.
    B.S. Zou, H.C. Chiang, Phys. Rev. D 69, 034004 (2004).CrossRefADSGoogle Scholar
  11. 11.
    B. Kerbikov, A. Stavinsky, V. Fedotov, Phys. Rev. C 69, 055205 (2004).CrossRefADSGoogle Scholar
  12. 12.
    J.Z. Bai et al., Phys. Rev. Lett. 91, 022001 (2003).CrossRefADSGoogle Scholar
  13. 13.
    B. Aubert et al., Phys. Rev. D 72, 051101 (2005).CrossRefADSGoogle Scholar
  14. 14.
    M. Sudol et al., Eur. Phys. J. A 44, 373 (2010).CrossRefADSGoogle Scholar
  15. 15.
    J. Van de Wiele, S. Ong, Eur. Phys. J. A 49, 18 (2013).CrossRefADSGoogle Scholar
  16. 16.
    E.C. Titchmarsh, Theory of functions (Oxford University Press, London, 1939).Google Scholar
  17. 17.
    R. Baldini et al., Eur. Phys. J. C 46, 421 (2006) S. Pacetti (private communication).CrossRefADSGoogle Scholar
  18. 18.
    S. Pacetti, Chin. Phys. C 34, 874 (2010).CrossRefADSGoogle Scholar
  19. 19.
    F.J. Ynduráin, The Theory of Quark and Gluon Interactions (Springer-Verlag, 1993).Google Scholar
  20. 20.
    T. Muta, Foundations of quantum Chromodynamics in Lectures Notes in Physics, Vol. 5 (World Scientific, 1986).Google Scholar
  21. 21.
    W. Greiner, A. Schäfer, Quantum Chromodynamics (Springer-Verlag, Berlin, Heidelberg, 1994).Google Scholar
  22. 22.
    I.M. Guelfand, G.E. Chilov, Les distributions (Dunod, Paris, 1962).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institut de Physique Nucléaire d’Orsay (UMR 8608), IN2P3-CNRSUniversité de Paris-SudOrsay CedexFrance

Personalised recommendations