Advertisement

Strange quark matter and strangelets in the improved quasiparticle model

  • Chen WuEmail author
  • Renli Xu
Regular Article - Theoretical Physics

Abstract

In this work, the properties of strange quark matter and strangelets are investigated within the framework of the improved quasiparticle model. The energy per baryon and particle chemical potentials as a function of the quark matter density are given. In particular, within the multiple reflection expansion method, the finite-size effects of strangelets are discussed in detail. The stable radius of a strangelet in the present model is smaller than, but comparable with that of the corresponding nucleus with the same baryon number. With the baryon number increment of stable strangelets, it is found that the surface tension decreases to 33 MeV fm−2 for strangelets with the baryon number greater than 104.

Keywords

Baryon Number Quark Matter Strange Quark Strange Star Left Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Witten, Phys. Rev. D 30, 272 (1984).CrossRefADSGoogle Scholar
  2. 2.
    E. Farhi, R.L. Jaffe, Phys. Rev. D 30, 2379 (1984).CrossRefADSGoogle Scholar
  3. 3.
    E.P. Gilson, R.L. Jaffe, Phys. Rev. Lett. 71, 332 (1993).CrossRefADSGoogle Scholar
  4. 4.
    A.A. Isayev, Phys. Rev. C 91, 015208 (2015).CrossRefADSGoogle Scholar
  5. 5.
    S. Banerjee, S.K. Ghosh, S. Raha, D. Syam, Phys. Rev. Lett. 85, 1384 (2000).CrossRefADSGoogle Scholar
  6. 6.
    J. Madsen, Phys. Rev. D 71, 014026 (2005).CrossRefADSGoogle Scholar
  7. 7.
    B. Monreal, JHEP 02, 077 (2007).CrossRefADSGoogle Scholar
  8. 8.
    M. Weiner, Int. J. Mod. Phys. E 15, 37 (2006).CrossRefADSGoogle Scholar
  9. 9.
    STAR Collaboration, Phys. Rev. C 76, 011901 (2007).CrossRefGoogle Scholar
  10. 10.
    C. Wu, R. Xu, EPL 110, 42001 (2015).CrossRefADSGoogle Scholar
  11. 11.
    Y. Nambu, G. Jona-Lasinio, Phys. Rep. 122, 345 (1961).Google Scholar
  12. 12.
    Y. Zhang, R.K. Su, S.Q. Ying, P. Wang, Europhys. Lett. 56, 361 (2001).CrossRefADSGoogle Scholar
  13. 13.
    X.J. Wen, J.Y. Li, J.Q. Liang, G.X. Peng, Phys. Rev. C 82, 025809 (2010).CrossRefADSGoogle Scholar
  14. 14.
    B.K. Patra, C.P. Singh, Phys. Rev. D 54, 3551 (1996).CrossRefADSGoogle Scholar
  15. 15.
    N. Prasad, C.P. Singh, Phys. Lett. B 501, 92 (2001).CrossRefADSGoogle Scholar
  16. 16.
    K. Schertler, C. Greiner, M.H. Thoma, Nucl. Phys. A 616, 659 (1997).CrossRefADSGoogle Scholar
  17. 17.
    M.I. Gorenstein, S.N. Yang, Phys. Rev. C 52, 5206 (2001).Google Scholar
  18. 18.
    J.F. Xu, G.X. Peng, F. Liu, D.F. Hou, L.W. Chen, Phys. Rev. D 92, 025025 (2015).CrossRefADSGoogle Scholar
  19. 19.
    G.X. Peng, H.C. Chiang, P.Z. Ning, B.S. Zou, Phys. Rev. C 59, 3542 (1999).CrossRefADSGoogle Scholar
  20. 20.
    X.J. Wen, X.H. Zhong, G.X. Peng, P.N. Shen, P.Z. Ning, Phys. Rev. C 72, 015204 (1999).CrossRefADSGoogle Scholar
  21. 21.
    O.G. Benvenuto, G. Lugones, Phys. Rev. D 51, 1987 (1995).CrossRefADSGoogle Scholar
  22. 22.
    P. Wang, Phys. Rev. C 62, 015204 (2000).CrossRefADSGoogle Scholar
  23. 23.
    A. Peshier, B. Kämpfer, G. Soff, Phys. Rev. D 66, 094003 (2002).CrossRefADSGoogle Scholar
  24. 24.
    A. Peshier, B. Kämpfer, G. Soff, Phys. Phys. C 61, 045203 (2000).ADSGoogle Scholar
  25. 25.
    A. Peshier, B. Kampfer, G. Soff, arXiv:hep-ph/0106090v2.
  26. 26.
    X.P. Zheng, M. Kang, X.W. Liu, S.H. Yang, Phys. Rev. C 72, 025809 (2005).CrossRefADSGoogle Scholar
  27. 27.
    T. Zhao, Y. Yan, X.L. Luo, H.S. Zong, Phys. Rev. D 91, 034018 (2015).CrossRefADSGoogle Scholar
  28. 28.
    Particle Data Group (W.M. Yao et al.), J. Phys. G: Nucl. Part. Phys. 33, 1 (2006).CrossRefADSGoogle Scholar
  29. 29.
    R. Balian, C. Bloch, Ann. Phys. (N.Y.) 60, 401 (1970).zbMATHMathSciNetCrossRefADSGoogle Scholar
  30. 30.
    T.H. Hanssan, R.L. Jaffe, Ann. Phys. (N.Y.) 151, 204 (1983).CrossRefADSGoogle Scholar
  31. 31.
    M.S. Berger, R.L. Jaffe, Phys. Rev. C 35, 213 (1987) 44.CrossRefADSGoogle Scholar
  32. 32.
    J. Madsen, Phys. Rev. D 47, 5156 (1993).CrossRefADSGoogle Scholar
  33. 33.
    S. Huang, J. Potvin, C. Rebbi, S. Sanielevici, Phys. Rev. D 42, 2864 (1990).CrossRefADSGoogle Scholar
  34. 34.
    B.C. Parija, Phys. Rev. C 48, 2483 (1993).CrossRefADSGoogle Scholar
  35. 35.
    H. Heiselberg, C.J. Pethick, E.F. Staubo, Phys. Rev. Lett. 70, 1355 (1993).CrossRefADSGoogle Scholar
  36. 36.
    K. Iida, K. Sato, Phys. Rev. C 58, 2538 (1998).CrossRefADSGoogle Scholar
  37. 37.
    L.J. Luo, J. Cao, Y. Yan, W.M. Sun, H.S. Zong, Eur. Phys. J. C 73, 2626 (2013).CrossRefADSGoogle Scholar
  38. 38.
    J. Cao, Y. Jiang, W.M. Sun, H.S. Zong, Phys. Lett. B 711, 65 (2012).CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.Key Laboratory of Modern Acoustics and Department of PhysicsNanjing UniversityNanjingChina

Personalised recommendations