Advertisement

A helium gas scintillator active target for photoreaction measurements

  • Ramsey Al Jebali
  • John R. M. AnnandEmail author
  • Jan-Olof Adler
  • Iskender Akkurt
  • Emma Buchanan
  • Jason Brudvik
  • Kevin Fissum
  • Simon Gardner
  • David J. Hamilton
  • Kurt Hansen
  • Lennart Isaksson
  • Kenneth Livingston
  • Magnus Lundin
  • John C. McGeorge
  • Ian J. D. MacGregor
  • Roderick MacRae
  • Duncan G. Middleton
  • Andreas J. H. Reiter
  • Günther Rosner
  • Bent Schröder
  • Johan Sjögren
  • Daria Sokhan
  • Bruno Strandberg
Special Article - Tools for Experiment and Theory

Abstract

A multi-cell He gas scintillator active target, designed for the measurement of photoreaction cross sections, is described. The target has four main chambers, giving an overall thickness of 0.103 g/cm3 at an operating pressure of 2 MPa. Scintillations are read out by photomultiplier tubes and the addition of small amounts of N2 to the He, to shift the scintillation emission from UV to visible, is discussed. First results of measurements at the MAX IV Laboratory tagged-photon facility show that the target has a timing resolution of around 1 ns and can cope well with a high-flux photon beam. The determination of reaction cross sections from target yields relies on a Monte Carlo simulation, which considers scintillation light transport, photodisintegration processes in 4He, background photon interactions in target windows and interactions of the reaction-product particles in the gas and target container. The predictions of this simulation are compared to the measured target response.

References

  1. 1.
    J.B. Birks, The Theory and Practice of Scintillation Counting (Pergammon Press, Oxford, 1964).Google Scholar
  2. 2.
    C. Eggler, C.M. Huddleston, Nucleonics 14, 34 (1956).Google Scholar
  3. 3.
    H. Wilkens et al., J. Phys. Conf. Series 160, 012043 (2009).CrossRefADSGoogle Scholar
  4. 4.
    G. Aad et al., Eur. Phys. J. C 70, 723 (2010).CrossRefADSGoogle Scholar
  5. 5.
    G.L. Morgan, R.L. Walter, Nucl. Instrum. Methods 58, 277 (1968).CrossRefADSGoogle Scholar
  6. 6.
    H. Davie, R.B. Galloway, Nucl. Instrum. Methods 108, 581 (1973).CrossRefADSGoogle Scholar
  7. 7.
    L. Drigo et al., Nucl. Instrum. Methods 166, 261 (1979).CrossRefADSGoogle Scholar
  8. 8.
    E.H. Thorndike, W.J. Shlaer, Rev. Sci. Instrum. 30, 838 (1959).CrossRefADSGoogle Scholar
  9. 9.
    I. Kazuo et al., Nucl. Instrum. Methods A 262, 323 (1987).CrossRefGoogle Scholar
  10. 10.
    D.N. McKinsey et al., Nucl. Instrum. Methods A 516, 475 (2004).CrossRefADSGoogle Scholar
  11. 11.
    S. Quaglioni et al., Phys. Rev. C 69, 044002 (2004).CrossRefADSGoogle Scholar
  12. 12.
    T. Kii et al., Nucl. Instrum. Methods A 552, 329 (2005).CrossRefADSGoogle Scholar
  13. 13.
    R. Al Jebali, PhD Thesis, University of Glasgow (2013) http://www.nuclear.gla.ac.uk/npe-theses/AlJebali_thesis.pdf.
  14. 14.
    Y.M. Chan, A. Dalgarno, Proc. Phys. Soc. 85, 227 (1965).CrossRefADSGoogle Scholar
  15. 15.
    Eljen technology Ltd., http://www.eljentechnology.com.
  16. 16.
    S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003).CrossRefADSGoogle Scholar
  17. 17.
    Geant-4 Physics Reference Manual Version 10.0, 6th Dec. 2013, http://geant4.cern.ch/support/userdocuments.shtml.
  18. 18.
    Data sheet HOQ-310 fused quartz POL-O/424M-E, Heraeus, http://optics.heraeus-quarzglas.com/media/webmedia_local/datenbltter/O424me_HOQ.pdf .
  19. 19.
    Type XP2262, Data Handbook Photomultipliers, Philips Components Ltd., Book PC04 (1990).Google Scholar
  20. 20.
    E. Wiberg, N. Wiberg, A.F. Holleman, Inorganic Chemistry (Academic Press, 2001) p. 1655, ISBN 0-12-352651-5.Google Scholar
  21. 21.
  22. 22.
    J. Ahrens et al., Nucl. Phys. A 251, 479 (1975).CrossRefADSGoogle Scholar
  23. 23.
    F.K. Goward, J.J. Wilkins, Proc. R. Soc. London A 217, 376 (1953).CrossRefGoogle Scholar
  24. 24.
    J.-O. Adler et al., Nucl. Instrum. Methods A 715, 1 (2013).CrossRefADSGoogle Scholar
  25. 25.
    J.M. Vogt et al., Nucl. Instrum. Methods A 324, 198 (1993).CrossRefADSGoogle Scholar
  26. 26.
    M. Cronqvist et al., Nucl. Instrum. Methods A 317, 273 (1992).CrossRefADSGoogle Scholar
  27. 27.
    J.R.M. Annand et al., Nucl. Instrum. Methods A 400, 344 (1998).CrossRefADSGoogle Scholar
  28. 28.
    J.R.M. Annand et al., Nucl. Instrum. Methods A 262, 371 (1987).CrossRefADSGoogle Scholar
  29. 29.
    A.J.H. Reiter, PhD thesis, University of Glasgow 2004, http://www.nuclear.gla.ac.uk/npe-theses/Reiter_thesis.pdf.
  30. 30.
    A. Reiter et al., Nucl. Instrum. Methods A 565, 753 (2006).CrossRefADSGoogle Scholar
  31. 31.
    M. Morhac et al., Nucl. Instrum. Methods A 401, 113 (1997).CrossRefADSGoogle Scholar
  32. 32.
    V. Ganenko, A measurement of the 4He(γ, n)3He reaction cross section asymmetry below pion photoproduction threshold, Experiment 10-02, MAX IV Laboratory, November 2010.Google Scholar
  33. 33.
    J.R.M. Annand, Compton Scattering on the He Isotopes with an Active Target, Experiment A2-01/13, Mainz Microtron MAMI, October 2013, http://wwwa2.kph.uni-mainz.de/images/PAC2013/MAMI-A2-01-2013.pdf.

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ramsey Al Jebali
    • 1
  • John R. M. Annand
    • 1
    Email author
  • Jan-Olof Adler
    • 2
  • Iskender Akkurt
    • 4
  • Emma Buchanan
    • 1
  • Jason Brudvik
    • 3
  • Kevin Fissum
    • 2
  • Simon Gardner
    • 1
  • David J. Hamilton
    • 1
  • Kurt Hansen
    • 3
  • Lennart Isaksson
    • 3
  • Kenneth Livingston
    • 1
  • Magnus Lundin
    • 3
  • John C. McGeorge
    • 1
  • Ian J. D. MacGregor
    • 1
  • Roderick MacRae
    • 1
  • Duncan G. Middleton
    • 5
  • Andreas J. H. Reiter
    • 1
  • Günther Rosner
    • 1
  • Bent Schröder
    • 2
  • Johan Sjögren
    • 1
    • 3
  • Daria Sokhan
    • 1
  • Bruno Strandberg
    • 1
  1. 1.School of Physics & AstronomyUniversity of GlasgowGlasgowScotland, UK
  2. 2.Department of PhysicsUniversity of LundLundSweden
  3. 3.MAX IV LaboratoryLundSweden
  4. 4.Fen-Edebiyat FacultySüleyman Demirel UniversityIspartaTurkey
  5. 5.Kepler Centre for Astro and Particle Physics, Physikalisches InstitutUniversität TübingenTübingenGermany

Personalised recommendations