Advertisement

Beta-delayed proton emission from 21Mg

  • M. V. LundEmail author
  • M. J. G. Borge
  • J. A. Briz
  • J. Cederkäll
  • H. O. U. Fynbo
  • J. H. Jensen
  • B. Jonson
  • K. L. Laursen
  • T. Nilsson
  • A. Perea
  • V. Pesudo
  • K. Riisager
  • O. Tengblad
Regular Article - Experimental Physics

Abstract

Beta-delayed proton emission from 21Mg has been measured at ISOLDE, CERN, with a detection setup consisting of two charged-particle telescopes surrounding the decay point. Altogether 27 βp branches were measured with center-of-mass energies between 0.4–7.2 MeV. Seven new βp branches were observed. Beta-delayed protons were used to determine the half-life of 21Mg as 118.6 ± 0.5 ms. From a line shape fit of the βp branches we extract the widths, spins, and parities of the resonances of 21Na. An improved interpretation of the decay scheme in accordance with the results obtained in reaction studies is presented.

Keywords

Line Shape Silicon Detector Energy Calibration Decay Scheme Ground State Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    B. Blank, M.J.G. Borge, Prog. Part. Nucl. Phys. 60, 403 (2008).CrossRefADSGoogle Scholar
  2. 2.
    M. Pfützner, L.V. Grigorenko, M. Karny, K. Riisager, Rev. Mod. Phys. 84, 567 (2012).CrossRefADSGoogle Scholar
  3. 3.
    M.J.G. Borge, Phys. Scr. T 152, 014013 (2013).CrossRefADSGoogle Scholar
  4. 4.
    G. Audi et al., Chin. Phys. C 36, 1603 (2012).CrossRefGoogle Scholar
  5. 5.
    Richard G. Sextro, R.A. Gough, Joseph Cerny, Phys. Rev. C 8, 258 (1973).CrossRefADSGoogle Scholar
  6. 6.
    M.V. Lund, M.J.G. Borge, J.A. Briz, J. Cederkäll, H.O.U. Fynbo, J.H. Jensen, B. Jonson, K.L. Laursen, T. Nilsson, A. Perea, V. Pesudo, K. Riisager, O. Tengblad, arXiv:1506.03915v1 (2015).
  7. 7.
    R. Barton, R. McPherson, R.E. Bell, W.R. Frisken, W.T. Link, R.B. Moore, Can. J. Phys. 41, 2007 (1963).CrossRefADSGoogle Scholar
  8. 8.
    R. McPherson, J.C. Hardy, Can. J. Phys. 43, 1 (1965).CrossRefADSGoogle Scholar
  9. 9.
    J.C. Hardy, R.E. Bell, Can. J. Phys. 43, 1671 (1965).CrossRefADSGoogle Scholar
  10. 10.
    J.-C. Thomas, PhD thesis, University of Bordeaux, 2003.Google Scholar
  11. 11.
    E. Kugler, Hyperfine Interact. 129, 23 (2000).CrossRefADSGoogle Scholar
  12. 12.
    V.N. Fedoseyev, G. Huber, U. Köster, J. Lettry, V.I. Mishin, H. Ravn, V. Sebastian, Hyperfine Interact. 129, 409 (2000).CrossRefADSGoogle Scholar
  13. 13.
    G. Audi et al., Chin. Phys. C 36, 1157 (2012).CrossRefGoogle Scholar
  14. 14.
    D. Schardt, K. Riisager, Z. Phys. A 345, 265 (1993).CrossRefADSGoogle Scholar
  15. 15.
    J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM - The Stopping and Range of Ions in Matter, 5th edition (SRIM Co., USA, 2008).Google Scholar
  16. 16.
    W.N. Lennard, H. Geissel, K.B. Winterbon, D. Phillips, T.K. Alexander, J.S. Forster, Nucl. Instrum. Methods Phys. Res. A 248, 454 (1986).CrossRefADSGoogle Scholar
  17. 17.
    U.C. Bergmann, K. Riisager, Nucl. Phys. A 701, 213c (2002).CrossRefADSGoogle Scholar
  18. 18.
    M.A. Stephens, in Goodness-of-fit techniques, edited by R.B. D’Agostino, M.A. Stephens (Marcel Dekker, New York, 1986) p. 97. .Google Scholar
  19. 19.
    V. Choulakian, R.A. Lockhart, M.A. Stephens, Can. J. Stat. 22, 125 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    A.M. Lane, R.G. Thomas, Rev. Mod. Phys. 30, (1958).Google Scholar
  21. 21.
    M. Bhattacharya, E.G. Adelberger, Phys. Rev. C 65, 055502 (2002).CrossRefADSGoogle Scholar
  22. 22.
    N. Michel, Comput. Phys. Commun. 176, 232 (2007).CrossRefADSzbMATHGoogle Scholar
  23. 23.
    A. Hoffmann, P. Betz, H. Röpke, B.H. Wildenthal, Z. Phys. A 332, 289 (1989).ADSGoogle Scholar
  24. 24.
    M. Fernández, G. Murillo, J. Ramirez, O. Avila, S.E. Darden, M.C. Rozak, J.L. Foster, B.P. Hichwa, P.L. Jolivette, Nucl. Phys. A 369, 425 (1981).CrossRefADSGoogle Scholar
  25. 25.
    J.F. Wilkerson, T.M. Mooney, R.E. Fauber, T.B. Clegg, H.J. Karwowski, E.J. Ludwig, W.J. Thompson, Nucl. Phys. A 549, 223 (1992).CrossRefADSGoogle Scholar
  26. 26.
    R. Bloch, T. Knellwolf, R.E. Pixley, Nucl. Phys. A 123, 129 (1969).CrossRefADSGoogle Scholar
  27. 27.
    C. Van der Leun, W.L. Mouton, Physica 30, 333 (1964).CrossRefADSGoogle Scholar
  28. 28.
    R.B. Firestone, Nucl. Data Sheets 103, 269 (2004).CrossRefADSGoogle Scholar
  29. 29.
    G.W. Butler, J. Cerny, S.W. Cosper, R.L. McGrath, Phys. Rev. 166, 1096 (1968).CrossRefADSGoogle Scholar
  30. 30.
    D.H. Wilkinson, B.E.F. Macefield, Nucl. Phys. A 232, 58 (1974).CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • M. V. Lund
    • 1
    Email author
  • M. J. G. Borge
    • 2
    • 5
  • J. A. Briz
    • 2
  • J. Cederkäll
    • 3
  • H. O. U. Fynbo
    • 1
  • J. H. Jensen
    • 1
  • B. Jonson
    • 4
  • K. L. Laursen
    • 1
  • T. Nilsson
    • 4
  • A. Perea
    • 2
  • V. Pesudo
    • 2
  • K. Riisager
    • 1
  • O. Tengblad
    • 2
  1. 1.Department of Physics and AstronomyAarhus UniversityAarhus CDenmark
  2. 2.Instituto de Estructura de la MateriaCSICMadridSpain
  3. 3.Department of Nuclear PhysicsLund UniversityLundSweden
  4. 4.Department of Fundamental PhysicsChalmers University of TechnologyGöteborgSweden
  5. 5.ISOLDE, PH DepartmentCERNGeneva 23Switzerland

Personalised recommendations