Advertisement

A collective coupled-channel model and mirror state energy displacements

  • P. R. FraserEmail author
  • K. Amos
  • L. Canton
  • S. Karataglidis
  • D. van der Knijff
  • J. P. Svenne
Regular Article - Theoretical Physics

Abstract

The spectra of nucleon-nucleus mirror systems allow examination of charge symmetry breaking in nucleon-nucleus interactions. To date, such examination has been performed with studies using microscopic models of structure. Herein we seek characterisation with a coupled-channel model in which the nucleon-nucleus interactions are described using a collective model prescription with the Pauli principle taken into account. The neutron-nucleus Hamiltonian is chosen to give the best match to the compound system spectrum, with emphasis on finding the correct ground state energy relative to the neutron-nucleus threshold. The Coulomb interactions for the proton-nucleus partner of a mirror pair are determined using charge distributions that match the root-mean-square charge radii of the nuclei in question. With the Coulomb interaction so defined modifying the neutron-nucleus Hamiltonian, we then predict a spectrum for the relevant proton-nucleus compound. Discrepancies in that resulting spectrum with measured values we tentatively ascribe to charge-symmetry breaking effects. We consider spectra obtained in this way for the mirror pairs 13C and 13N, 15C and 15F, and 15O and 15N, all to ∼ 10 MeV excitation.

Keywords

Charge Distribution Ground State Energy Nuclear Interaction Pauli Blocking Mirror Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Abegg et al., Phys. Rev. Lett. 75, 1711 (1995).CrossRefADSGoogle Scholar
  2. 2.
    K. Okamoto, Phys. Lett. 11, 150 (1964).CrossRefADSGoogle Scholar
  3. 3.
    Y. Wu, S. Ishikawa, T. Sasakawa, Phys. Rev. Lett. 64, 1875 (1990).CrossRefADSGoogle Scholar
  4. 4.
    J.A. Nolen, J.P. Schiffer, Annu. Rev. Nucl. Sci. 19, 471 (1969).CrossRefADSGoogle Scholar
  5. 5.
    B.A. Brown, W.A. Richter, R. Lindsay, Phys. Lett. B 483, 49 (2000).CrossRefADSGoogle Scholar
  6. 6.
    Y.H. Lam, N.A. Smirnova, E. Caurier, Phys. Rev. C 87, 054304 (2013) and references cited therein.CrossRefADSGoogle Scholar
  7. 7.
    A.P. Zucker et al., Phys. Rev. Lett. 89, 142502 (2002).CrossRefADSGoogle Scholar
  8. 8.
    M.A. Bentley, S.M. Lenzi, Prog. Part. Nucl. Phys. 59, 497 (2007).CrossRefADSGoogle Scholar
  9. 9.
    T. Myo, K. Kato, Prog. Theor. Exp. Phys. 2014, 083D01 (2014).CrossRefGoogle Scholar
  10. 10.
    Y. Suzuki, K. Ikeda, Phys. Rev. C 38, 410 (1988).CrossRefADSGoogle Scholar
  11. 11.
    T. Myo, Y. Kikuchi, K. Kato, Phys. Rev. C 85, 034338 (2012).CrossRefADSGoogle Scholar
  12. 12.
    K. Amos, L. Canton, G. Pisent, J.P. Svenne, D. van der Knijff, Nucl. Phys. A 728, 65 (2003).CrossRefADSGoogle Scholar
  13. 13.
    V.Z. Goldberg et al., Phys. Rev. C 69, 031302(R) (2004).CrossRefADSGoogle Scholar
  14. 14.
    V. Krasnopol’sky, V. Kukulin, Sov. J. Nucl. Phys. 20, 883 (1974).Google Scholar
  15. 15.
    V. Kukulin, V. Pomerantsev, Ann. Phys. 111, 330 (1978).MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    S. Saito, Prog. Theor. Phys. 41, 705 (1969).CrossRefADSGoogle Scholar
  17. 17.
    J. Mitroy, G.G. Ryzhikh, Comput. Phys. Commun. 123, 107 (1999).CrossRefADSGoogle Scholar
  18. 18.
    I.A. Ivanov, M.W.J. Bromley, J. Mitroy, Comput. Phys. Commun. 152, 9 (2003).CrossRefADSGoogle Scholar
  19. 19.
    L. Canton et al., Phys. Rev. Lett. 94, 122503 (2005).CrossRefADSGoogle Scholar
  20. 20.
    K. Amos et al., Nucl. Phys. A 917, 7 (2013).CrossRefADSGoogle Scholar
  21. 21.
    L. Cardman et al., Phys. Lett. B 91, 203 (1980).CrossRefADSGoogle Scholar
  22. 22.
    E. Ormann et al., Phys. Rev. C 44, 1096 (1991).CrossRefADSGoogle Scholar
  23. 23.
    L. Schaller et al., Nucl. Phys. A 379, 523 (1982).CrossRefADSGoogle Scholar
  24. 24.
    W. Ruchstuhl et al., Nucl. Phys. A 430, 685 (1984).CrossRefADSGoogle Scholar
  25. 25.
    P.E. Hodgson, Nuclear Reactions and Nuclear Structure (Oxford University Press, 1971).Google Scholar
  26. 26.
    C.W. de Jager, H. de Vries, C. de Vries, At. Data. Nucl. Data Tables 14, 479 (1974).CrossRefADSGoogle Scholar
  27. 27.
    H. de Vries, C.W. de Jager, C. de Vries, At. Data. Nucl. Data Tables 36, 495 (1987).CrossRefADSGoogle Scholar
  28. 28.
    F. Ajzenberg-Selove, Nucl. Phys. A 523, 1 (1991).CrossRefADSGoogle Scholar
  29. 29.
    O. Gritzay, The Total Neutron Cross Section for natural Carbon in the Energy Range 2 to 148 keV, in Proceedings of the International Conference Nuclear Data for Science and Technology, Nice, France, edited by O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, S. Leray (Springer-Verlag, Berlin, 2007) p. 543.Google Scholar
  30. 30.
    K. Amos et al., Nucl. Phys. A 879, 132 (2012).CrossRefADSGoogle Scholar
  31. 31.
    A. Lépine-Szily et al., Nucl. Phys. A 734, 331 (2004).CrossRefADSGoogle Scholar
  32. 32.
    W. Benenson et al., Phys. Rev. C 17, 1939 (1978).CrossRefADSGoogle Scholar
  33. 33.
    G.J. Kekelis et al., Phys. Rev. C 17, 1929 (1978).CrossRefADSGoogle Scholar
  34. 34.
    S. Grévy, O. Sorlin, N.V. Mau, Phys. Rev. C 56, 2885 (1997).CrossRefADSGoogle Scholar
  35. 35.
    I. Mukha et al., Phys. Rev. C 82, 054315 (2010).CrossRefADSGoogle Scholar
  36. 36.
    F.Q. Guo et al., Phys. Rev. C 72, 034312 (2005).CrossRefADSGoogle Scholar
  37. 37.
    T. Suda et al., Phys. Rev. Lett. 102, 102501 (2009).CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • P. R. Fraser
    • 1
    Email author
  • K. Amos
    • 2
    • 3
  • L. Canton
    • 4
  • S. Karataglidis
    • 3
    • 2
  • D. van der Knijff
    • 2
  • J. P. Svenne
    • 5
  1. 1.Institute of Theoretical PhysicsCurtin UniversityBentleyAustralia
  2. 2.School of PhysicsUniversity of MelbourneMelbourneAustralia
  3. 3.Department of PhysicsUniversity of JohannesburgAuckland ParkSouth Africa
  4. 4.Sezione di PadovaIstituto Nazionale di Fisica NuclearePadovaItalia
  5. 5.Department of Physics and AstronomyUniversity of Manitoba, and Winnipeg Institute for Theoretical PhysicsWinnipegCanada

Personalised recommendations